Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Векторы космидные и фазмидные




Фаговые векторы позволяют клонировать фрагменты ДНК длиной 15-25 т.п.о. этого недостаточно для клонирования генов животных и растений, длина которых превышает 35-40 т.п.о. Требуемой емкостью обладают векторные молекулы, называемые космидами (рис. II.8).

В 1978 г. был описан новый вид векторных молекул, получивших название «космиды». Это гибридные векторы, в состав которых входят три компонента: участок плазмиды, включающий ген устойчивости к антибиотику и ориджин; cos-участок фага X; рекомбинантная ДНК. Наличие в составе космид cos-участка позволяет производить упаковку ДНК в головку фага и использовать механизмы последнего для трансформации клеток. Емкость космидных векторов — от 33 до 49 тыс. пар нуклеотидов..

Наличие cos-сайтов в ДНК является единственным необходимым условием упаковываемости ДНК в фаговые частицы. Это означает, что последовательность нуклеотидов лямбда-ДНК, расположенная между двумя cos-сайтами, которая заключает в себе весь фаговый геном (35-45 т.п.о.), может быть замещена in vitro на аналогичный по длине фрагмент чужеродной ДНК и упакована в фаговые частицы. Такая искусственная фаговая частица оказывается нежизнеспособной. Однако после адсорбции химерной фаговой частицы на поверхности бактериальной клетки заключенная в ней ДНК проникает (вводится фаговой частицей) внутрь бактерии и начинает автономно реплицироваться как плазмида, размер которой составляет 30-40 т.п.о. Поскольку такая плазмида (космида) содержит в своем составе селектируемые маркеры в виде генов устойчивости к антибиотикам, ее поддерживают в бактериальных клетках путем выращивания бактерий на среде с соответствующими антибиотиками. Несмотря на то, что емкость космидных векторов значительно выше фаговых, эффективность клонирования в космидах ниже, хотя и достигает в ряде случаев 105-106 колоний на 1 мкг клонируемой ДНК. При такой эффективности упаковки требуется всего лишь 2-4 мкг клонируемой ДНК для получения полной клонотеки большинства эукариотических геномов.

Фазмидами называют гибриды фагов и плазмид, способные развиваться и как первые, и как вторые. Они могут и существовать в определенных условиях в бактериальных клетках в виде плазмиды или же упаковываться в фаговые частицы in vivo при изменении этих условий. Фазми- ды создаются на основе фага Р1. В отличие от космид они обладают меньшей емкостью, однако позволяют использовать методы ДНК-анализа, не перенося информацию из фаговых векторов в плазмидные

Создан еще один вид фагового вектора – фагмиды. Они созданы на основе плазмид, в которые встроен репликатор фагов содержащий 1 нить ДНК. И если такой плазмидой, содержащей репликатор фага, содержащего нитевидную ДНК, ввести в бактериальную клетку и одновременно заразить интактную фагом F1,то данная плазмида (фагмида) будет реплицироваться по типу фаговой репликации и включаться в белковую оболочку,которая возникает за счет репродукции вот этого интактного фага,фага помощника. И на ряду с образованием нормальных фаговых частиц F1 будут формироваться фаговые частицы содержащие однонитевую плазмидную ДНК. Таким образом фагмиды позволяют получать однонитевые ДНК содержащие сегмент чужДНК. Это удобно для создания так называемых меченных зондов. Но можно получить и в виде двунитевых молекул, тогда надо получить однонитевую молекулу из этих фагов in vitro,с помощью достройки комплемментарной 2-ой нити. Так что, фагмиды позволяют получать гибридные ДНК в виде однонитевой и двунитевой ДНК, но с использованием системы синтеза белка in vitro

 

 

28. Внехромосомные экспрессирующие векторы млекопитающих используются для изучения функций и регуляции генов млекопитающих. Кроме того, с их помощью могут быть получены аутентичные рекомбинантные белки, которые потенциально могут использоваться в медицинских целях для лечения некоторых заболеваний человека. Уже сконструированные экспрессирующие векторы млекопитающих весьма многочисленны, но все они обладают сходными свойствами и похожи на другие эукариотические экспрессирующие векторы. Промоторы клонированного и селективного маркерного генов, а также их сигналы терминации транскрипции (сигналы полиаденилирования; должны происходить из клеток эукариот; обычно используют регуляторные последовательности ДНК вирусов животных (например, цитомеголовируса человека, SV40 или HSV) или генов млекопитающих (например, гена (3-актина, металлотионеина, тимидинкиназы или бычьего гормона роста). При этом более предпочтительны сильные промоторы и эффективные сигналы полиаденилирования. Последовательности, необходимые для отбора и амплификации экспрессирующего вектора млекопитающих в Е. coli, происходят из стандартного клонирующего вектора Е. coli (например, плазмиды pBR322).

Селективные маркерные гены. Для отбора трансфицированных клеток млекопитающих часто используют бактериальный ген Neor, кодирующий неомицинфосфотрансферазу. В этой системе применяется токсичное соединение генетицин (G-418), блокирующее трансляцию в нетрансфицированных клетках млекопитающих. При этом в трансфицированных клетках G-418 фосфорилируется неомицинфосфотрансферазой и инактивируется. Следовательно, выживают и пролиферируют только клетки, синтезирующие продукт гена Neor.

Другая система отбора трансфицированных клеток млекопитающих основана на использовании гена, кодирующего фермент дигидрофолатредуктазу (DHFR). В этой системе используют клетки с дефектным геном DHFR, т. е. клетки, в которых функциональная DHFR не синтезирeется. После трансфекции DHFR-клеток экспрессирующим вектором млекопитающих с функционирующим DHFR-геном в среду добавляют метотрексат. Не трансфицированные клетки не растут в его присутствии, а клетки, синтезирующие дигидрофолатредуктазу, выживают. После предварительного отбора клеток с DHFR-геном концентрацию метотрексата в среде увеличивают и отбирают клетки с большим числом копий вектора, синтезирующие в большом количестве рекомбинантный белок.

В экспрессирующие векторы млекопитающих уже встроены гены самых разных белков и осуществлена их экспрессия в хозяйских клетках. Иногда выход продукта увеличивался, если между промотором и клонированным геном встраивали интрон. Механизм этого феномена неизвестен. Возможно, первичный транскрипт клонированного гена содержит скрытые сайты сплайсинга, по которым вырезается часть кодирующей области клонированного гена, а при наличии дополнительного интрона сплайсинг по ним происходит с меньшей вероятностью. Высокий уровень экспрессии клонированного гена достигался при ее координации с экспрессией селективного маркерного гена. Для этого, например, ген DHFR встраивали поблизости от клонированного гена, так чтобы оба гена находились под контролем одного промотора и имели общий сигнал полиаденилирования, а ген DHFR был фланкирован сайтами сплайсинга интрона. DHFR и рекомбинантный белок транслировались с первичного транскрипта и сплайсированной мРНК соответственно.

Экспрессия двух клонированных генов в одной клетке млекопитающих

Некоторые ценные в коммерческом отношении белки в активной форме состоят из разных полипептидных цепей. Например, тиреотропный гормон человека — это гетеродимер, а гемоглобин — тетрамер, состоящий из двух субъединиц, по две копии каждая (а2(32). Чтобы получить активный мультимерный белок, можно попытаться клонировать ген или кДНК каждой из субъединиц, синтезировать и очистить субъединицы, а затем смешать их в пробирке. Однако таким образом удается получить лишь немногие мультимерные белки, поскольку in vitro правильная укладка полипептидных цепей осуществляется редко. Сборка же димерных и тетрамерных белков in vivo протекает весьма эффективно. Поэтому были разработаны стратегии синтеза двух разных рекомбинантных белков в одной клетке.

Для этого хозяйские клетки одновременно трансфицировали двумя экспрессирующими векторами млекопитающих, каждый из которых нес ген или кДНК одной из субъединиц и разные гены селективных маркеров. Трансфицированные клетки подвергали двойному отбору, соответственно и выжившие клетки несли оба вектора. Системы с двумя векторами успешно использовались для синтеза аутентичных димерных и тетрамерных рекомбинантных белков. К сожалению, дважды трансфицированные клетки часто утрачивают один из двух векторов. Кроме того, число копий каждого из векторов не всегда одинаково, так что одна субъединица может синтезироваться в большем количестве, чем другая, и выход конечного продукта может снижаться. Чтобы решить эти проблемы, были сконструированы векторы, содержащие оба клонированных гена. В некоторых случаях они были помещены под контроль независимых промоторов и сигналов полиаденилирования. А для того чтобы гарантировать синтез рекомбинантных белков в одинаковом количестве, были созданы так называемые двухцистронные векторы, в которых клонированные гены разделялись сегментом ДНК, содержащим внутренний сайт связывания рибосом. Такие сайты были обнаружены в геномах вирусов млекопитающих; они обеспечивают одновременную трансляцию различных белков с полицистронной мРНК. Транскрипция конструкции «ген—внутренний сайт связывания рибосом—ген» регулируется одним промотором и одним сигналом полиаденилирования. Синтезируется один транскрипт с двумя генами, трансляция начинается с 5'-конца мРНК и с внутреннего сайта.

Суммируя, можно сказать, что экспрессирующие векторы млекопитающих столь же универсальны и эффективны, как и векторы для других эукариотических систем экспрессии, если речь вдет о получении аутентичных рекомбинантных белков для исследовательских и медицинских целей. Однако промышленный синтез рекомбинантных белков с использованием модифицированных клеток млекопитающих обходится слишком дорого.

29. Рекомбинантные ДНК вводятся в клетки – реципиенты. В генной инженерии такие реципиентные клетки играют 2 роли. 1. Они позволяют отыскивать в банке генов клоны синтезируемой рекомбинантной ДНК. 2 Впоследствии такие реципиентные клетки могут использоваться для получения целевых продуктов.

Способ введения рекомбинантной ДНК учитывается на основе вектора какого типа была получена такая рекомбинантная ДНК и в клетки каких организмов необходимо ее ввести путем трансформации клетки или протопласта, или с использованием метода электропорации. Если рекомбинантную ДНК получать на основании фагов, ее можно вводить в изолированную ДНК – это трансвекция. Можно вводить интактные фаговые частицы – это инфекция (космиды, фазмиды).

Др. способы генетического обмена – конъюгация, трансдукция.

В клетках растений – трансформация растительных протопластов, обработка растительных клеток или тканей рекомбинантыми ДНК; широко используются инъекции рекомбинантных ДНК в ядро; использование липосом. Липосомы – сферические структуры, которые имеют липидную оболочку, внутри которой находится рекомбинантная ДНК. Для введения в клетки животных – вирусные инфекции, метод электропорации, микроинъекции в ядро. Если после введения рекомбинантной ДНК все клетки в организме ее наследуют, то говорят о получении трансгенного организма.

Электропорация – клетки или протопласт в течение короткого промежутка времени подвергаются воздействию тока высокого напряжения (2000-4000 вольт). В результате в мембране клетки образуются поры ок. 30 нм, которые могут существовать 1-2 минуты и ч/з которые в клетку могут поступать рекомбинантные ДНК. Затем поры закрываются, а ДНК остается в клетке. Это универсальный способ.

Баллистический метод – применятся преимущественно у эукариот. Используются баллистические пушки в которые вносятся частицы АК или W, на которые напыляются рекомбинантная ДНК. Затем, с помощью инертных газов при ↑Р, такие частицы выстреливаются из пушки в культуру клеток. По различным закономерностям часть частиц попадает в ядро и рекомбинантные ДНК там задерживаются.

 

Поиск клонов с рекомбинантной ДНК.

Этот этап сложен и непредсказуем.

Самый простой метод – это поиск клонов по фенотипу после введения рекомбинантной ДНК (например пигментация). Можно воспользоваться комплементационными тестами, но необходимо иметь мутантные клетки, дефективные по синтезу активного продукта.

Методы гибридизационные – необходимо наличие специфических меченых ДНК или РНК зондов. Чаще их метят Р32. Зондами м. б. короткие олигонуклеотидные последовательности, которые соответствуют наиболее консервативной части отыскиваемого гена. Эти консервативные последовательности могут включать до 100 нуклеотидов для прокариот и до 1000 для эукариот.

После введения рекомбинантной ДНК, формирующиеся на среде колонии, переносятся на специальный нитроцеллюлозный фильтр. Их подвергают лизису и последующей денатурации ДНК с использованием щелочи. ДНК прочно связывается с фильтром. Фильтр промывается и обрабатывается радиоактивным меченым зондом и определяют тот клон с которым этот зонд связался.

Иммунохимические методы – клоны после введения рекомбинантной ДНК лизируют и обрабатывают антителами к соответствующему продукту. Такие антитела – меченые.

30. Трансге́нные живо́тные, экспериментально полученные животные, содержащие во всех клетках своего организма дополнительную интегрированную с хромосомами и экспрессирующуюся чужеродную ДНК (трансген), которая передается по наследству по законам Менделя. Изредка трансген может реплицироваться и передаваться по наследству как экстрахромосомный автономно реплицирующийся фрагмент ДНК. Термин «трансгеноз» был предложен в 1973 для обозначения переноса генов одних организмов в клетки организмов других видов, в том числе далеких в эволюционном отношении. Получение трансгенных животных осуществляется с помощью переноса клонированных генов (ДНК) в ядра оплодотворенных яйцеклеток (зигот) или эмбриональных стволовых (плюрипотентных) клеток. Затем в репродуктивные органы реципиентной самки пересаживают модифицированные зиготы или яйцеклетки, у которых собственное ядро заменено на модифицированное ядро эмбриональных стволовых клеток, либо бластоцисты (эмбрионы), содержащие чужеродную ДНК эмбриональных стволовых клеток. Имеются отдельные сообщения об использовании спермиев для создания трансгенных животных, однако этот прием пока не получил широкого распространения.

Первые трансгенные животные были получены в 1974 в Кембридже (США) Рудольфом Янишем (Jaenisch) в результате инъекции в эмбрион мыши ДНК вируса обезьяны SV40. В 1980 американским ученым Жоржем Гордоном (Gordon) с соавторами было предложено использовать для создания трансгенных животных микроинъекцию ДНК в пронуклеус зиготы. Именно этот подход положил начало широкому распространению технологии получения трансгенных животных. Первые трансгенные животные в России появились в 1982. С помощью микроинъекций в пронуклеус зиготы в 1985 в США были получены первые трансгенные сельскохозяйственные животные (кролик, овца, свинья). В настоящее время для создания трансгенных животных, кроме микроинъекций, используются другие экспериментальные приемы: инфицирование клеток рекомбинантными вирусами, электропорация, «обстрел» клеток металлическими частицами с нанесенными на их поверхности рекомбинантными ДНК.

В последние годы в результате появления технологии клонирования животных возникли дополнительные возможности для создания трансгенных животных. Уже есть трансгенные животные, полученные с помощью микроинъекции генов в ядра дифференциированных клеток.

Все имеющиеся методы переноса генов пока еще не очень эффективны. Для получения одного трансгенного животного в среднем необходимы микроинъекции ДНК в 40 зигот мышей, 90 зигот козы, 100 зигот свиньи, 110 зигот овцы и в 1600 зигот коровы. Механизмы интеграции экзогенной ДНК или формирования автономных репликонов (единиц репликации, отличных от хромосом) при трансгенозе не известны. Встраивание трансгенов у каждого вновь получаемого трансгенного животного происходит в случайные участки хромосом, причем может происходить встраивание как единичной копии трансгена, так и множества копий, располагающихся, как правило, тандемно в единичном локусе одной из хромосом. Как правило, гомология между сайтом (местом) интеграции трансгена и самим трансгеном отсутствует. При использовании для трансгеноза эмбриональных стволовых клеток возможна предварительная селекция, что позволяет получать трансгенных животных с трансгеном, интегрированным в результате гомологичной рекомбинации с определенным участком генома хозяйского организма. С помощью этого подхода осуществляют, в частности, целенаправленное прекращение экспрессии определенного гена (это называют «нокаутом гена»).

Технология создания трансгенных животных является одной из наиболее бурно развивающихся биотехнологий в последние 10 лет. Трансгенные животные широко используются как для решения большого числа теоретических задач, так и в практических целях для биомедицины и сельского хозяйства. Некоторые научные проблемы не могли бы быть решены без создания трансгенных животных. На модели трансгенных лабораторных животных проводятся широкие исследования по изучению функции различных генов, регуляции их экспрессии, фенотипическому проявлению генов, инсерционному мутагенезу и др. Трансгенные животные важны для различных биомедицинских исследований. Существует множество трансгенных животных, моделирующих различные заболевания человека (рак, атеросклероз, ожирение и др.). Так, получение трансгенных свиней с измененной экспрессией генов, определяющих отторжение органов, позволит использовать этих животных для ксенотрансплантации (пересадки органов свиньи человеку). В практических целях трансгенные животные используются различными зарубежными фирмами как коммерческие биореакторы, обеспечивающие производство разнообразных медицинских препаратов (антибиотиков, факторов свертываемости крови и др.). Кроме того, перенос новых генов позволяет получать трансгенных животных, отличающихся повышенными продуктивными свойствами (например, усиление роста шерсти у овец, понижение содержания жировой ткани у свиней, изменение свойств молока) или устойчивостью к различным заболеваниям, вызываемым вирусами и другими патогенами. В настоящее время человечество уже использует множество продуктов, получаемых с помощью трансгенных животных: медицинские препараты, органы, пища.

 





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 1420 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2420 - | 2132 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.