Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Композиция из золотых




софокусных эллипса и гиперболы (рис.12.40)

. Если эллипс (по рис. 12.37) и гипербо-ла (по рис. 12.38) с о ф о к у с н ы, т.е., имеют общие фокусы, то они образуют гар-моничную геометрическую систему с зако-номерной структурой конструктивных свя-зей и отношений между их элементами.

К числу основных изобразительных свойств этой структуры относятся следую-щие:

1. Софокусные эллипс и гипербола «взаимно-перпендикулярны», т.е., ортого-нально сопряжены, так как в точках их пере-сечения M, N, P и Q касательные к одной линии являются нормалями к другой и нао-борот;

2. Ортогональная сопряженность элли-пса и гиперболы определяет ортогональ-ную сопряженность их конструктивных эле-ментов: вершин, фокусов и оснований ди-ректрис. Это значит, что эти точки являются концами тождественно-расположенных на горизонтальной оси K¢ O L ¢ гипотенуз пря-моугольных треугольников, прямые углы ко-торых инцидентны вертикальной оси СОD. В частности:

2.1. Директрисы эллипса и гиперболы соответственны в ортогональном сопряже-нии, так как их основания являются раз-ными полюсами одних и тех же поляр,-- об-щих фокальных хорд MN и PQ;

2.2. Вершинам А и В эллипса ортого-нально сопряжены (соответствуют) фокусы F1 и F2 гиперболы и наоборот, вершинам А

и В гиперболы соответствуют фокусы F1 и F2 эллипса;

2.3.Точки М, N, P и Q пересечения софокусных гиперболы и эллипса явля-ются вершинами квадрата со сторонами, равными их фокальным хордам;

2.4. Центральный прямоугольник, длин-ные стороны которого совпадают с дирек-трисами d1 и d2 гиперболы, а короткие друг от друга на расстояние между её вершинами А и В, является золо-тым, так как он выдержан в пропор-ции 1,236: 2 или 0,618: 1,000;

2.5. Все прямоугольники данной структуры, диагонали которых па-раллельны или соответственно пер-пендикулярны диагоналям центра-льного золотого прямоугольника, яв-ляются золотыми;

2.6. Отношения диагоналей ром-бов, образованных касательными как к гиперболе, так и к эллипсу, являются золотыми, и др.

Эти свойства дают основания назвать всю геометро-графическую композицию из софокусных гипербо-лы и эллипса золотой, так как она приводит в закономерное гармонич-ное расположение различные точки, прямые, прямоугольники, ромбы, ок-ружности, эллипс и гиперболу.

 

 

 

 

 

Рис. 12.40. Композиция из софокусных золотых

эллипса и гиперболы

 





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 790 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.