Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Визначник суми матриць




Нехай потрібно знайти визначник суми С = А + У двох квадратних матриць n-го порядку. Представимо визначник цієї суми через стовпці матриць, що складаються:

У відповідності з властивістю лінійності визначника щодо стовпців (3) запишемо:

Застосовуючи цю властивість щодо других стовпців отриманих визначників, маємо:

Продовжуючи цей процес до останніх стовпців включно, одержуємо розкладання в суму, що містить визначники матриць, що складаються, det A і det У, а також визначники, утворені зі стовпців матриць А і В усіма можливими сполученнями, причому стовпці в таких визначниках займають ті ж місця, що вони, займали в матрицях А і В. Це можна виразити співвідношенням:

де — визначник, отриманий заміщенням s стовпців визначника першої матриці відповідними стовпцями другої матриці. Знаки сум означають, що складаються визначники для всіляких сполучень s стовпців, що заміщаються. Оскільки і , можна запропонувати більш короткий запис:

Скориставшись розкладанням Лапласа (5) для визначників по s заміщених стовпцях, одержимо інший вираз для визначника суми двох матриць:

У силу комутативності додавання матриць байдуже, яку з матриць A і У вважати першої і яку — другий. Отримані розкладання через свою складність непридатні для практичних обчислень визначників, але вони можуть бути корисні при доказі різних співвідношень. Зокрема, вони дозволяють виразити речовинну і мниму частини визначника комплексної матриці:

де т = 1/2 п — для парних п; т = 1/2 (п — 1) — для непарних п..

Застосуємо ці формули для обчислення визначника комплексної матриці:

Для речовинної і мнимої частин визначника det А маємо:

Таким чином, , що можна перевірити безпосереднім обчисленням визначника.

Розкладання визначника суми двох матриць можна узагальнити для будь-якої кількості квадратних матриць того самого порядку. Так, для трьох матриць маємо:

,

де через позначені визначники, утворені всіма можливими заміщеннями стовпців визначника першої матриці s стовпцями другої матриці і k стовпцями третьої матриці.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 661 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.