Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Типи кінцевих графів




Якщо множина вершин графа кінцева, то він називається кінцевим графом. У математику розглядаються і нескінченні графи, але ми займатися ними не будемо, тому що в практичних додатках вони зустрічаються рідко. Кінцевий граф G = (V, Е), що містить р вершин і q ребер, називається (р, q) -графом.

Мал. 3.3. Типи графів: а —псевдограф; б- повний граф (шестикутник); в-двочастковий граф (біграф).

 

Нехай і — відповідно безлічі вершин і ребер - графа. Кожне ребро з'єднує пари вершин які є його кінцями (граничними вершинами). Для орієнтованого ребра (дуги) розрізняють початкову вершину, з якої дуга виходить, і кінцеву вершину, у яку дуга заходить. Ребро, граничними вершинами якого є та сама вершина, називається петлею. Ребра з однаковими граничними вершинами є рівнобіжними і називаються кратними. У загальному випадку граф може містити й ізольовані вершини, що не є кінцями ребер і не зв'язані ні між собою, ні з іншими вершинами. Наприклад, для (5,6)-графа на мал. 3.3., а ; ребра і рівнобіжні, ребро є петлею, а — ізольована вершина.

Число ребер, зв'язаних з вершиною , (петля враховується двічі), називають ступенем вершини і позначають через чи . Так, для графа на мал. 9, a і т.д. Очевидно, ступінь ізольованої вершини дорівнює нулю . Вершина ступеня одиниці називається кінцевою чи висячою вершиною . Легко показати, що в будь-якому графі сума ступенів усіх вершин дорівнює подвоєному числу ребер, а число вершин непарного ступеня завжди парне. В орграфі розрізняють позитивні і негативні ступеня вершин, що рівні відповідно числу що з і заходять у , дуг. Наприклад, для вершини орграфа (див. мал. 3.2., а) маємо і . Очевидно, суми позитивних і негативних ступенів усіх вершин орграфа рівні між собою і рівні також числу всіх дуг.

Граф без петель і кратних ребер називають простим чи звичайної. Граф без петель, але з кратними ребрами називають мультиграфом. Найбільш загальний випадок графа, коли допускаються петлі і кратні ребра, називають псевдографом. Так, граф на мал. 3.1, б — це мультиграф, а на мал. 3.3, а — псевдограф. Якщо граф не має ребер , то всі його вершини ізольовані , і він називається порожнім, чи нуль-графом.

Простий граф, у якому будь-які дві вершини з'єднані ребром, називається повним (на мал. 3.3, б приведений приклад повного графа із шістьма вершинами).

Якщо безліч вершин простого графа допускає така розбивка на дві непересічних підмножини і , що не існує ребер, що з'єднують вершини того самого підмножини, то він називається двочастковим чи біграфом (мал. 3.3, в). Орієнтований граф вважається простим, якщо він не має строго рівнобіжних дуг і петель.

Граф, ступеня усіх вершин якого однакові і рівні , називається однорідним (регулярним) го ступеня. Повний граф з вершинами завжди однорідний ступеня , а порожній граф— однорідний ступеня 0. Граф третього ступеня називають кубічним. Він володіє поруч цікавих властивостей і, зокрема, завжди має парне число вершин.





Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 1265 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2491 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.