Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Графика функции




Направление выпуклости графика функции.

Опр. 1. График функции имеет на интервале выпуклость, направленную вниз, если он расположен не ниже любой касательной, проведённой на этом интервале.

Опр.2. График функции имеет на интервале выпуклость, направленную вверх, если он расположен не выше любой касательной, проведённой на этом интервале.

Теор.1. (Достаточное условие выпуклости графика функции). Если функция имеет на интервале вторую производную, и () для , то её график имеет на этом интервале выпуклость, направленную вниз (вверх).

Док-во. Пусть, для определённости, на . Пусть с - произвольная точка , докажем, что график функции лежит выше касательной, проведённой к нему в точке . Уравнение касательной: ( - текущая точка касательной).

По формуле Тейлора . Вычитая из этого равенства предыдущее, получим на , т.е. точка графика функции действительно лежит выше точки графика касательной.

Аналогично рассматривается случай на .





Поделиться с друзьями:


Дата добавления: 2015-08-18; Мы поможем в написании ваших работ!; просмотров: 523 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.