Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теорема Ролля




Теорема. Пусть функция дифференцируема в открытом промежутке , на концах этого промежутка сохраняет непрерывность и принимает одинаковые значения: . Тогда существует точка , в которой производная функции равна нулю: .



Рис. 3. Теорема Ролляустанавливает условия существования хотя бы одной точки c, в которой касательная к графику функции параллельна оси 0 x. Таких точек может быть несколько.

Доказательство. Если в промежутке , то во всех точках этого промежутка. Иначе наибольшее значение M функции превышает ее наименьшее значение m в промежутке . Поскольку на концах этого промежутка функция принимает одинаковые значения, то по крайней мере одно из значений, M или m, достигается во внутренней точке c промежутка . Тогда по теореме Ферма .





Поделиться с друзьями:


Дата добавления: 2015-08-18; Мы поможем в написании ваших работ!; просмотров: 603 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2359 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.