Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Экстремумы функции одной переменной. Необходимое условие экстремума




Пусть функция f(x), определенная и непрерывная в промежутке [a,b], не является в нем монотонной. Найдутся такие части [, ] промежутка [a,b], в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т.е. между и.

Говорят, что функция f(x) имеет в точке максимум (или минимум), если эту точку можно окружить такой окрестностью (x 0 -,x 0 +), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство.

f(x) < f(x 0 )(или f(x)>f(x 0 ))

Иными словами, точка x 0 доставляет функции f(x) максимум (минимум), если значение f(x 0 ) оказывается наибольшим (наименьшим) из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки. Отметим, что самое определение максимума (минимума) предполагает, что функция задана по обе стороны от точки x 0 .

Если существует такая окрестность, в пределах которой (при x=x 0 ) выполняется строгое неравенство

f(x)<f(x 0 )(или f(x)>f(x 0 )

то говорят, что функция имеет в точке x 0 собственный максимум (минимум), в противном случае – несобственный.

Если функция имеет максимумы в точках x 0 и x 1 , то, применяя к промежутку [x 0 ,x 1 ] вторую теорему Вейерштрасса, видим, что наименьшего своего значения в этом промежутке функция достигает в некоторой точке x 2 между x 0 и x 1 и имеет там минимум. Аналогично, между двумя минимумами непременно найдется максимум. В том простейшем (и на практике – важнейшим) случае, когда функция имеет вообще лишь конечное число максимумов и минимумов, они просто чередуются.

Заметим, что для обозначения максимума или минимума существует и объединяющий их термин – экстремум.

Понятия максимум (max f(x)) и минимум (min f(x)) являются локальными свойствами функции и имеют место в определенной точке х 0 . Понятия наибольшего (sup f(x)) и наименьшего (inf f(x)) значений относятся к конечному отрезку [a,b] и являются глобальными свойствами функции на отрезке.

Из рисунка 1 видно, что в точках х 1 и х 3 локальные максимумы, а в точках х 2 и х 4 – локальные минимумы. Однако, наименьшего значения функция достигает в точке х=а, а наибольшего – в точке х=b.

Поставим задачу о разыскании всех значений аргумента, доставляющих функции экстремум. При решении ее основную роль будет играть производная.

Предположим сначала, что для фунции f(x) в промежутке(a,b) существует конечная производная. Если в точке х 0функция имеет экстремум, то, применяя к промежутку (х 0 -,х 0 +), о которой была речь выше, теорему Ферма, заключаем, что f (x)=0 этом состоит необходимое условие экстремума. Экстремум следует искать только в тех точках, где производная равна нулю.

Не следует, думать, однако, что каждая точка, в которой производная равна нулю, доставляет функции экстремум: указанное только что необходимое условие неявляется достаточным.





Поделиться с друзьями:


Дата добавления: 2015-08-18; Мы поможем в написании ваших работ!; просмотров: 1140 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2188 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.