Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теорема Лагранжа




Теорема. Пусть функция дифференцируема в открытом промежутке и сохраняет непрерывность на концах этого промежутка. Тогда существует такая точка , что

  (13)  

Доказательство. Рассмотрим вспомогательную функцию

Эта функция непрерывна и дифференцируема в промежутке , а на его концах принимает одинаковые значения:

Тогда удовлетворяет всем условиям теоремы Ролля и, следовательно, существует точка , в которой производная функции равна нулю:

Следствие 1. В частном случае, когда , из теоремы Лагранжа вытекает, что существует точка , в которой производная функции равна нулю: . Это означает, что теорема Лагранжа является обобщением теоремы Ролля.

Следствие 2. Если во всех точках некоторого промежутка , то в этом промежутке.
Действительно, пусть и – произвольные точки промежутка и . Применяя теорему Лагранжа к промежутку , получим

Однако во всех точках промежутка . Тогда

Учитывая произвольность точек и , получаем требуемое утверждение.





Поделиться с друзьями:


Дата добавления: 2015-08-18; Мы поможем в написании ваших работ!; просмотров: 475 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.