Величина переохлаждения у разных металлов
Лекции.Орг

Поиск:


Величина переохлаждения у разных металлов




Металл Тпл, К Ткр, К DТ, К
Олово 504,9 113,9
Гадолиний 570,5 221,5
Свинец 600,4 247,4
Висмут
Алюминий
Серебро
Золото
Марганец
Никель
Кобальт
Железо
Палладий
Платина

 

 

Рис. 1.21. Сема дендрита

 

Таким образом, механизм кристаллизации металлических расплавов при высоких скоростях охлаждения принципиально отличается тем, что в малых объемах расплава достигается высокая степень переохлаждения. Следствием этого является развитие объемной кристаллизации, которая у чистых металлов может быть гомогенной. Центры кристаллизации с размером больше критического способны к дальнейшему росту.

Для металлов и сплавов наиболее типична дендритная форма роста, впервые описанная еще в 1868 г. Д.К. Черновым. На рис. 1.21 показан эскиз Д.К. Чернова, поясняющий схему строения дендрита. Обычно дендрит состоит из ствола (ось первого порядка), от которого идут ветви – оси второго и последующих порядков. Дендритный рост протекает в определенных кристаллографических направлениях с ответвлениями через одинаковые промежутки. В структурах с решетками гранецентрированного и объемно-центрированного кубов дендритный рост идет в трех взаимно перпендикулярных направлениях. Экспериментально установлено, что дендритный рост наблюдается только в переохлажденном расплаве. Скорость роста определяется степенью переохлаждения. Задача теоретического определения скорости роста в функции степени переохлаждения еще не получила обоснованного решения. Исходя из экспериментальных данных, полагают, что эта зависимость приближенно может рассматриваться в виде V ~ (D Т)2.

Многие исследователи полагают, что при некоторой критической степени переохлаждения наблюдается лавинообразное увеличение числа центров кристаллизации, способных к дальнейшему росту. Зарождение все новых и новых кристаллов может прервать дендритный рост.

 

Рис. 1.22. Трансформация структур

 

По последним зарубежным данным, с ростом степени переохлаждения и температурного градиента перед фронтом кристаллизации, наблюдается трансформация структуры быстро затвердевающего сплава от дендритной к равноосной, микрокристаллической, нанокристаллической и далее к аморфному состоянию (рис. 1.22).

1.11.5. Аморфизация расплава

На рис. 1.23 иллюстрируется идеализированная ТТТ-диаграмма (Time-Temperature-Transaction), поясняющая особенности затвердевания легированных металлических расплавов в зависимости от скорости охлаждения.

 

 

Рис. 1.23. ТТТ-диаграмма: 1 – умеренная скорость охлаждения:

2 – очень высокая скорость охлаждения;

3 – промежуточная скорость охлаждения

 

По вертикальной оси отложена температура, по горизонтальной – время. Выше некоторой температуры плавления ‑ ТП жидкая фаза (расплав) стабильна. Ниже этой температуры жидкость переохлаждается и становится нестабильной, поскольку появляется возможность зарождения и роста центров кристаллизации. Однако при резком охлаждении может возникнуть прекращение движения атомов в сильно переохлажденной жидкости и при температуре ниже ТЗ сформируется аморфная твердая фаза. Для многих сплавов температура начала аморфизации ‑ ТЗ лежит в пределах от 400 до 500 ºC. Большинство традиционных слитков и отливок охлаждаются медленно в соответствии с кривой 1 на рис. 1.23. За время охлаждения возникают и растут центры кристаллизации, формируя кристаллическую структуру сплава в твердом состоянии. При очень высокой скорости охлаждения (кривая 2) образуется аморфная твердая фаза. Представляет также интерес промежуточная скорость охлаждения (кривая 3). Для этого случая возможен смешанный вариант затвердевания с наличием как кристаллической, так и аморфной структуры. Такой вариант имеет место в том случае, когда начавшийся процесс кристаллизации не успевает завершиться за время охлаждения до температуры ТЗ. Смешанный вариант затвердевания с формированием мелких аморфных частиц поясняется упрощенной схемой, представленной на рис. 1.24.

 

 

Рис. 1.24. Схема формирования мелких аморфных частиц

 

Слева на этом рисунке изображена крупная капля расплава, содержащая в объеме 7 центров кристаллизации, способных к последующему росту. В середине эта же капля разделена на 4 части, одна из которых не содержит центров кристаллизации. Эта частица затвердеет аморфной. Справа на рисунке исходная частица разделена на 16 частей, 9 из которых станут аморфными. На рис. 1.25. представлена реальная зависимость числа аморфных частиц высоколегированного никелевого сплава от размера частиц и интенсивности охлаждения в газовой среде (аргон, гелий).

 

 

Рис. 1.25. Зависимость числа аморфных частиц сплава никеля от

размера частиц и интенсивности охлаждения в газовой среде

 

Переход металлического расплава в аморфное, или как его еще называют, стеклообразное состояние является сложным процессом и зависит от многих факторов. В принципе, все вещества можно получить в аморфном состоянии, но для чистых металлов требуются столь высокие скорости охлаждения, которые пока не могут быть обеспечены современными техническими средствами. В то же время высоколегированные сплавы, в том числе эвтектические сплавы металлов с металлоидами (В, С, Si, Р) затвердевают в аморфном состоянии при более низких скоростях охлаждения. В табл. 1.9 приведены критические скорости охлаждения при аморфизации расплавов никеля и некоторых сплавов.

Таблица 1.9





Дата добавления: 2015-01-29; просмотров: 645 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.004 с.