1. 5 (n = 5 ). λ = 4 . T0 = 1. .
α= λ/μ=λ0=4∙1=4.
=
0. = 45/[5! (1+ 4/1+ 42/2! + 43/3! + 44/4! + 45/5!)] = 0,16.
, , .
.
. , , ( ).
[4,5,7]. , , , , . () () .
() , , () .
.[6].
, , . . . . , . .
, . .
, , (), .
|
|
:
1. . .
2. , . = < 0, 1,..., b >.. N = b + 1 - .
3. (.4.1).
4.1.
4.
(0) = P0= < P0(0),1(0),..., b(0) >.
5. λξk.. Λ = || λξk.||NN.
6. : (t) = < 0 (t), 1, (t),..., Pb(t)>, Ρζ - ξ- t. , Ρζ (t), ,
= 1 . , .
7.
dPξ(t) / dt = ‑Pξ(t) ξk +
ξkPk(t), (4.9)
k= 1, 2,,b; Pξ(0) = Pξ0.
=αP(t),P(0)=P0, (4.10)
α = || .||NN, αξk =
, ,
= βp(t) = C, (4.11)
β = || .||bb,
=
C = λ01, λ02,,λob
8. ( , dP/dt=0). . .
.
s(s) = β(s) ‑ (0), (4.12)
(s) - - ;
β - ; (0) - - .
(4.12)
(s) = [sI β]-1 (0), (4.13)
I - .
9. . . , , , , . ,
=<1∞,2∞,,b∞>, (4.14)
Pξ∞ = lim Pξ(t), ζ= 1,2,,b .
|
|
β∞ = ‑. (4.15)
, .
10. .
.