Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Обработка косвенных измерений




Косвенные измерения в практике электрических измерений встречаются довольно часто. Вопрос оценки погрешности резуль­тата измерения один из важнейших в таких экспериментах. Имея подробную исходную информацию о применяемых средствах из­мерения, измеряемых величинах и условиях проведения экспери­мента, можно достаточно строго решить задачу оценки суммарной погрешности результата измерения. Правда, требуется четко ого­варивать все допущения. Возможны два подхода к решению этой задачи: детерминированный и вероятностный, рассмотрим пер­вый подход.

Детерминированный подход (иногда называемый методом наи­худшего случая) более характерен для обычных технических изме­рений и экспресс-измерений с их обычно упрощенными моделя­ми процессов и подходами. Перед рассмотрением этого подхода оговорим необходимые допущения:

а) инструменты исправны, имеют реальные погрешности, соот­ветствующие своим классам точности. Причем их погрешности только систематические, т.е. не меняющиеся в течение данного эксперимента. Случайных погрешностей нет;

б) исходные измеряемые величины характеризуются неизмен­ными (в течение данного эксперимента) значениями основных параметров;

в) условия работы СИ нормальные или рабочие;

г) функциональная зависимость искомой величины Y от исходных величин Хi, известна достаточно точно;

д) оператор имеет достаточную квалификацию.

Если интересующая нас величина Y связана с исходными вели­чинами Хi, известной функциональной зависимостью F:

Y =F (X 1, X 2, , Xn)

и предельные значения абсолютных погрешностей Δi определения каждой исходной величины Хi известны, то предельное значение абсолютной погрешности Δ Y результата измерения искомой вели­чины Y вобщем случае можно определить по так называемой фор­муле накопления частных погрешностей:

Δ Y =

где dF/dXi частные производные функционала F по каждой исходной величине в точках, соответствующих найденным значениям величин Xii предельные значения абсолютных погрешностей определения исходных величин Хi.

Рассмотрим два частных, но довольно распространенных, слу­чая функциональной зависимости F.

Первый частный случай – функционал F имеет вид суммы. Если функциональная зависимость имеет вид

Y = ,

где ai коэффициенты функциональной зависимости, то пре­дельное значение абсолютной погрешностиΔ Y определяется по формуле

Δ Y = .

Относительная погрешность δ Y, %, при этом может быть найдена обычным образом:

δ Y = Δ Y / Y ´ 100.

Например, если Y= 5 Х1 + 2 + Хъ, то ΔY = 1 + 2Δ2 + Δ3.

Второй частный случай – функционал F имеет вид произведе­ния. Если функциональная зависимость имеет вид

Y = ,

где П знак произведения п сомножителей; α i коэффициенты показатели степени исходных величин Xi,то предельное значение относительной погрешности δYопределяется по формуле

= ,

где δ i предельные значения относительных погрешностей опре­деления исходных величин Xi.

Предельное значение абсолютной погрешности Δ Y затем находится обычным образом:

Δ Y = δ YY /100.

Например, если функционал Y имеет вид

Y = X 12 X 23/ X 35,

то значение относительной погрешности

δ Y =1 +2 +3.

И хотя формально третье слагаемое должно входить в сумму со знаком минус, но, поскольку предельные значения отдельных погрешностей практически всегда симметричны (±), то в худшем случае (самое неблагоприятное сочетание значений и знаков всех составляющих) предел общей погрешности есть сумма модулей отдельных составляющих.





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 640 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2670 - | 2528 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.