Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Критерий устойчивости Найквиста




 

В 1932 г. американский ученый Г. Найквист вывел критерий, который дает необходимые и достаточные условия устойчивости систем с обратной связью. Этот критерий позволяет судить об устойчивости замкнутой системы по характеристике (годографу) разомкнутой системы.

Пусть – передаточная функция разомкнутой системы -го порядка, для которой граница устойчивости определятся точкой с координатами . Тогда для замкнутой системы с передаточной функцией точка границы устойчивости сместится по оси абсцисс влево на единицу, и ее координатами будут .

Для систем, устойчивых в разомкнутом состоянии, критерий Найквиста формулируется следующим образом: для того чтобы устойчивая разомкнутая система оставалась устойчивой в замкнутом состоянии, необходимо и достаточно, чтобы годограф комплексной частотной характеристики разомкнутой системы не охватывал точку с координатами при изменении частоты в пределах .

Термин «не охватывает точку» означает, что приращение угла поворота вектора, проведенного из точки с координатами к годографу, при изменении частоты в указанных пределах принимает нулевое значение . В противном случае, если , считают, что годограф точку охватывает.

Годограф Найквиста для различных типов разомкнутых систем представлен на рисунке 2.1.

 

а) замкнутая система устойчива б) замкнутая система неустойчива

Рисунок 2.1 – Годограф Найквиста устойчивой разомкнутой системы

 

В соответствии с критерием Найквиста об устойчивости замкнутой системы можно судить не только по годографу, но и совместно по АЧХ и ФЧХ разомкнутой системы. Устойчивость будет иметь место, если при граничной частоте, на которой абсолютное значение фазы разомкнутой системы равно , амплитудная частотная характеристика будет меньше единицы: при

.

Из критерия Найквиста следует, что нахождение замкнутой системы на границе устойчивости соответствует прохождению годографа разомкнутой системы через точку с координатами .

 





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 734 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.