Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


II Розв’язування нелінійних рівнянь




Постановка задачі:

Розглянемо задачу знаходження коренів рівняння

, (1)

де - задана функція дійсного змінного.

Розв’язування даної задачі можна розкласти на декілька етапів:

а) досліджена розташування коренів (в загальному випадку на комплексній площині) та їх кратність;

б) відділення коренів, тобто виділення областей, що містять тільки один корінь;

в) обчислення кореня з заданою точністю за допомогою одного з ітераційних алгоритмів.

Далі розглядаються ітераційні процеси, що дають можливість побудувати числову послідовність xn, яка збігається до шуканого кореня рівняння (1).

1. Метод ділення проміжку навпіл (метод дихотомії)

Нехай і відомо, що рівняння (1) має єдиний корінь . Покладемо a 0 =a, b 0 =b, x 0 = (a 0 +b 0)/2. Якщо , то . Якщо , то покладемо

(2)

 

(3)

(4)

і обчислимо . Якщо , то ітераційний процес зупинимо і будемо вважати, що . Якщо , то повторюємо розрахунки за формулами (2)-(4).

З формул (2), (3) видно, що і . Тому , а отже шуканий корінь знаходиться на проміжку . При цьому має місце оцінка збіжності

. (5)

Звідси випливає, що кількість ітерацій. які необхідно провести для знаходження наближеного кореня рівняння (1) з заданою точністю e задовольняє співвідношенню

. (6)

де [ c ] - ціла частина числа c.

Серед переваг даного методу слід відзначити простоту реалізації та надійність. Послідовність { xn } збігається до кореня для довільних неперервних функцій f (x). До недоліків можна віднести невисоку швидкість збіжності методу та неможливість безпосереднього узагальнення систем нелінійних рівнянь.





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 538 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

3165 - | 2756 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.