Пример расчета неразделимого импульсного отклика
Лекции.Орг

Поиск:


Пример расчета неразделимого импульсного отклика




Определить импульсный отклик идеального кругового фильтра нижних частот:

H(wx,wy) = 1 при wx2+wy2 <R2<p2; H(wx,wy) = 0 в остальных случаях.

Вычисления по круговой области целесообразно выполнять в полярных координатах: w = ,

j = arctg(wy/wx), f = arctg(m/n), при этом выражение 18.3.2 перепишется в следующем виде:

h(n,m) = w exp[jw cos(f-j)] dj dw =

= w Jo(w ) dw = J1(R ) / ,

где Jo(…), J1(…)- функции Бесселя 1-го рода 0-го и 1-го порядков соответственно.

На рис. 18.3.2 приведена пространственная форма импульсного отклика фильтра, расчет которой проведен при R = 1 с ограничением по N = 10 и M = 10, и сечения отклика по координате m.

Рис. 18.3.2. Круговой низкочастотный фильтр (справа - сечения по координате m).

Свойства двумерного преобразования Фурье. Вышеприведенные преобразования импульсного отклика в частотный отклик и наоборот представляют собой двумерные дискретные преобразования Фурье с прямоугольным растром дискретизации информации, эквивалентные одномерным преобразованиям. На двумерные преобразования с прямоугольным растром переносятся и другие свойства одномерных систем. В частности:

1. Фурье-преобразования сигналов.

S(wx,wy) = Sn Sm s(n,m) exp(-jnwx-jmwy). (18.3.3)

s(n,m) = S(wx,wy) exp(jnwx+jmwy) dwxdwy. (18.3.4)

2. Теорема о свертке.

z(n,m) = h(n,m) ** s(n,m) Û H(wx,wy) S(wx,wy) = Z(wx,wy).

z(n,m) = c(n,m) s(n,m) Û C(wx,wy) ** S(wx,wy) = Z(wx,wy).

3. Основные свойства Фурье-преобразования.

1) Линейность (в том числе для любых комплексных чисел a и b):

а×s(n,m)+b×z(n,m) Û aS(wx,wy)+bZ(wx,wy).

2) Пространственный сдвиг:

s(n-N,m-M) Û S(wx,wy) exp(-jNwx-jMwy).

3) Дифференцирование:

dS(wx,wy)/dwx Û -jn s(n,m),

dS(wx,wy)/dwy Û -jm s(n,m),

d2S(wx,wy)/(dwx dwy) Û -nm s(n,m).

4) Комплексное сопряжение:

х*(n,m) Û S*(-wx,-wy).

Вещественная и мнимая части Фурье-образов последовательностей s(n,m):

S(wx,wy) = S*(-wx,-wy).

Re [S(wx,wy)] = Re [S(-wx,-wy)].

Im [S(wx,wy)] = -Im [S(-wx,-wy)].

5) Теорема Парсеваля:

Sn Sm s(n,m) s*(n,m) = S(wx,wy) S*(wx,wy) dwx dwy.

В частности, при s(n,m) = s(n,m):

Sn Sm |s(n,m)|2 = |S(wx,wy)|2 dwx dwy,

где левая часть уравнения представляет собой полную энергию дискретного сигнала s(n,m), a функция |S(wn,wm)|2 - спектральную плотность энергии сигнала.





Дата добавления: 2015-05-06; просмотров: 368 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.003 с.