Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Двумерные системы




Системы осуществляют преобразование сигналов. Формализованная система - это оператор (операция) отображения входного сигнала на выходной: z(x,y) = Т[s(x,y)].

Базовыми операциями в системах, комбинациями которых осуществляются преобразования, являются операции скалярного умножения, сдвига и сложения:

z(n,m) = c s(n,m),

z(n,m) = s(n-N,m-M),

z(n,m) = s(n,m)+u(n,m).

Используя базовые операции, любую двумерную последовательность можно разложить на сумму взвешенных двумерных единичных импульсов:

s(n,m) = s(i,j) d(n-i,m-j). (18.2.1)

Обобщением скалярного умножения является пространственное маскирование:

z(n,m) = cn,m s(n,m). (18.2.2)

Правая часть равенства (18.2.2) представляет собой поэлементное произведение входного сигнала на совокупность чисел сn,m.

Кроме линейных операций в системах используются также безынерционные нелинейные преобразования с независимым нелинейным воздействием на значения отсчетов входной последовательности. Пример операции - возведение в квадрат:

zn,m = (sn,m)2.

Линейные системы. Система считается линейной при выполнении двух условий:

1. Пропорциональное изменение входного сигнала вызывает пропорциональное изменение выходного сигнала.

2. Суммарный сигнал двух входных последовательностей дает суммарный сигнал двух соответствующих выходных последовательностей.

Другими словами, если оператор Т[s(x,y)] описывает линейную систему и имеет место z(x,y) = Т[s(x,y)], q(x,y) = Т[u(x,y)], то Т[as(x,y)+bu(x,y)] = az(x,y)+bq(x,y). Линейные системы подчиняются принципу суперпозиции сигналов.

В выражении (18.2.1) значения s(i,j) можно рассматривать как скалярные множители для соответствующих единичных импульсов. Применяя оператор преобразования Т[.] к левой и правой части (18.2.1), получаем:

Т[s(n,m)] = у(n,m) = s(i,j) T[d(n-i,m-j)],

z(n,m) = s(i,j) hij(n,m), (18.2.3)

где hij(n,m) - отклик системы в точке (n,m) на единичный импульс в точке (i,j). Если импульсный отклик hij(n,m) определен для всех точек (i,j), то отклик системы на произвольный многомерный сигнал, как и для одномерных систем, находится с помощью суперпозиции.

Инвариантность к сдвигу. Система инвариантна к сдвигу, если сдвиг входной последовательности приводит к такому же сдвигу выходной последовательности:

Т[s(n-N,m-M)] = z(n-N,m-M).

Линейность и инвариантность к сдвигу являются независимыми свойствами системы. Так, пространственное маскирование линейно, но не инвариантно к сдвигу, а безынерционные операторы нелинейны, но инвариантны к сдвигу.

В дальнейшем ограничимся рассмотрением только систем, широко распространенных при решении практических задач - линейных и инвариантных к сдвигу (ЛИС-системы).

Импульсный отклик на произвольно расположенный входной импульс, как следует из выражения (18.2.3), описывается выражением:

hij(n,m) = T[d(n-ni,m-mj)].

Для частного случая i = j = 0 имеем:

ho(n,m) = T[d(n,m)].

Используя принцип инвариантности к сдвигу, получим:

hij(n,m) = ho(n-i,m-j) = h(n-i,m-j), (18.2.4)

т.e. импульсный отклик на произвольно расположенный входной импульс равен сдвинутому импульсному отклику на входной импульс, расположенный в начале координат.

Двумерная свертка. Подставляя (18.2.4) в выражение (18.2.3), получаем:

z(n,m) = Si Sj s(i,j) h(n-i,m-j). (18.2.5)

Двумерная дискретная свертка (18.2.5), является аналогом одномерной дискретной свертки. При замене переменных n-i = k, m-j = l, получим:

z(n,m) = Sk Sl h(k,l) s(n-k,m-l), (18.2.5')

т.е. двумерная свертка коммутативна, как и одномерная. В такой же мере она обладает свойством ассоциативности по отношению к последовательности операций свертки нескольких функций (результат не зависит от порядка свертки) и свойством дистрибутивности по отношению к операции свертки с суммой функций (результат аналогичен сумме сверток с каждой функцией). Эти свойства определяют и основное свойство двумерных (и многомерных) линейных систем при их параллельном и/или последовательном соединении – результирующая система также является линейной.

Для упрощения символьного аппарата двумерную свертку обозначают индексом (**):

z(n,m) = h(k,l) ** s(n-k,m-l).

При обобщении этого выражения на многомерные системы, в векторной форме:

z()= h() ** s( - ).

Разделимые системы. Если импульсный отклик системы может быть разделен:

h(k,l) = h(k) h(l), (18.2.6)

то выражение (18.2.5') принимает вид:

z(n,m) = Sk h(k) Sl h(l) s(n-k,m-l), (18.2.7)

или: z(n,m) = Sk h(k) g(n-k,m), g(n-k,m) = Sl h(l) s(n,m-l).

Массив g(n,m) вычисляется одномерной сверткой столбцов массива s(n,m) при n = const (сечения массива по координатам n) с откликом h(l), с последующим вычислением выходного массива z(n,m) одномерной сверткой строк g(n,m) при m = const с откликом h(k). Результат не изменится, если сначала выполнять свертку по строкам, а затем по столбцам. Система с откликом вида (18.2.6) называется разделимой. Отметим, что в разделимой системе входной и выходной сигнал не обязаны быть разделимыми.

Аналогичные разделимые системы могут существовать и в многомерном варианте.

Устойчивость системы. Интерес для практики представляют только устойчивые системы, обеспечивающие определенный конечный результат системной операции на конечные входные сигналы. Необходимым и достаточным условием устойчивости системы является абсолютная суммируемость ее импульсного отклика: Sk Sl |h(k,l)| < .

Специальные двумерные системы. На практике используются также системы с несколькими входами и/или выходами.

Допустим, система имеет i-входы и j-выходы, линейна и инвариантна к сдвигу по переменной t. Если на i-вход системы поступает одномерный единичный импульс di(t) при нулевых сигналах на остальных входах, то j-выходные сигналы будут импульсным откликом системы hij(t). При известном полном ансамбле значений hij для всех i-входов, для произвольной комбинации входных сигналов si(t) сигнал на j-выходе будет определяться выражением:

zj(t) = Si Sk hij(k) si(t-k). (18.2.8)





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 650 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2529 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.