Двумерные системы
Лекции.Орг

Поиск:


Двумерные системы




Системы осуществляют преобразование сигналов. Формализованная система - это оператор (операция) отображения входного сигнала на выходной: z(x,y) = Т[s(x,y)].

Базовыми операциямив системах, комбинациями которых осуществляются преобразования, являются операции скалярного умножения, сдвига и сложения:

z(n,m) = c s(n,m),

z(n,m) = s(n-N,m-M),

z(n,m) = s(n,m)+u(n,m).

Используя базовые операции, любую двумерную последовательность можно разложить на сумму взвешенных двумерных единичных импульсов:

s(n,m) = s(i,j) d(n-i,m-j). (18.2.1)

Обобщением скалярного умножения является пространственное маскирование:

z(n,m) = cn,m s(n,m). (18.2.2)

Правая часть равенства (18.2.2) представляет собой поэлементное произведение входного сигнала на совокупность чисел сn,m.

Кроме линейных операций в системах используются также безынерционные нелинейные преобразования с независимым нелинейным воздействием на значения отсчетов входной последовательности. Пример операции - возведение в квадрат:

zn,m = (sn,m)2.

Линейные системы. Система считается линейной при выполнении двух условий:

1. Пропорциональное изменение входного сигнала вызывает пропорциональное изменение выходного сигнала.

2. Суммарный сигнал двух входных последовательностей дает суммарный сигнал двух соответствующих выходных последовательностей.

Другими словами, если оператор Т[s(x,y)] описывает линейную систему и имеет место z(x,y) = Т[s(x,y)], q(x,y) = Т[u(x,y)], то Т[as(x,y)+bu(x,y)] = az(x,y)+bq(x,y). Линейные системы подчиняются принципу суперпозиции сигналов.

В выражении (18.2.1) значения s(i,j) можно рассматривать как скалярные множители для соответствующих единичных импульсов. Применяя оператор преобразования Т[.] к левой и правой части (18.2.1), получаем:

Т[s(n,m)] = у(n,m) = s(i,j) T[d(n-i,m-j)],

z(n,m) = s(i,j) hij(n,m), (18.2.3)

где hij(n,m) - отклик системы в точке (n,m) на единичный импульс в точке (i,j). Если импульсный отклик hij(n,m) определен для всех точек (i,j), то отклик системы на произвольный многомерный сигнал, как и для одномерных систем, находится с помощью суперпозиции.

Инвариантность к сдвигу. Система инвариантна к сдвигу, если сдвиг входной последовательности приводит к такому же сдвигу выходной последовательности:

Т[s(n-N,m-M)] = z(n-N,m-M).

Линейность и инвариантность к сдвигу являются независимыми свойствами системы. Так, пространственное маскирование линейно, но не инвариантно к сдвигу, а безынерционные операторы нелинейны, но инвариантны к сдвигу.

В дальнейшем ограничимся рассмотрением только систем, широко распространенных при решении практических задач - линейных и инвариантных к сдвигу (ЛИС-системы).

Импульсный отклик на произвольно расположенный входной импульс, как следует из выражения (18.2.3), описывается выражением:

hij(n,m) = T[d(n-ni,m-mj)].

Для частного случая i = j = 0 имеем:

ho(n,m) = T[d(n,m)].

Используя принцип инвариантности к сдвигу, получим:

hij(n,m) = ho(n-i,m-j) = h(n-i,m-j), (18.2.4)

т.e. импульсный отклик на произвольно расположенный входной импульс равен сдвинутому импульсному отклику на входной импульс, расположенный в начале координат.

Двумерная свертка. Подставляя (18.2.4) в выражение (18.2.3), получаем:

z(n,m) = Si Sj s(i,j) h(n-i,m-j). (18.2.5)

Двумерная дискретная свертка (18.2.5), является аналогом одномерной дискретной свертки. При замене переменных n-i = k, m-j = l, получим:

z(n,m) = Sk Sl h(k,l) s(n-k,m-l), (18.2.5')

т.е. двумерная свертка коммутативна, как и одномерная. В такой же мере она обладает свойством ассоциативности по отношению к последовательности операций свертки нескольких функций (результат не зависит от порядка свертки) и свойством дистрибутивности по отношению к операции свертки с суммой функций (результат аналогичен сумме сверток с каждой функцией). Эти свойства определяют и основное свойство двумерных (и многомерных) линейных систем при их параллельном и/или последовательном соединении – результирующая система также является линейной.

Для упрощения символьного аппарата двумерную свертку обозначают индексом (**):

z(n,m) = h(k,l) ** s(n-k,m-l).

При обобщении этого выражения на многомерные системы, в векторной форме:

z()= h() ** s(-).

Разделимые системы. Если импульсный отклик системы может быть разделен:

h(k,l) = h(k) h(l), (18.2.6)

то выражение (18.2.5') принимает вид:

z(n,m) = Sk h(k) Sl h(l) s(n-k,m-l), (18.2.7)

или: z(n,m) = Sk h(k) g(n-k,m), g(n-k,m) = Sl h(l) s(n,m-l).

Массив g(n,m) вычисляется одномерной сверткой столбцов массива s(n,m) при n = const (сечения массива по координатам n) с откликом h(l), с последующим вычислением выходного массива z(n,m) одномерной сверткой строк g(n,m) при m = const с откликом h(k). Результат не изменится, если сначала выполнять свертку по строкам, а затем по столбцам. Система с откликом вида (18.2.6) называется разделимой. Отметим, что в разделимой системе входной и выходной сигнал не обязаны быть разделимыми.

Аналогичные разделимые системы могут существовать и в многомерном варианте.

Устойчивость системы. Интерес для практики представляют только устойчивые системы, обеспечивающие определенный конечный результат системной операции на конечные входные сигналы. Необходимым и достаточным условием устойчивости системы является абсолютная суммируемость ее импульсного отклика: Sk Sl |h(k,l)| < .

Специальные двумерные системы.На практике используются также системы с несколькими входами и/или выходами.

Допустим, система имеет i-входы и j-выходы, линейна и инвариантна к сдвигу по переменной t. Если на i-вход системы поступает одномерный единичный импульс di(t) при нулевых сигналах на остальных входах, то j-выходные сигналы будут импульсным откликом системы hij(t). При известном полном ансамбле значений hij для всех i-входов, для произвольной комбинации входных сигналов si(t) сигнал на j-выходе будет определяться выражением:

zj(t) = Si Sk hij(k) si(t-k). (18.2.8)





Дата добавления: 2015-05-06; просмотров: 403 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.