Этапы решения численным методом
Лекции.Орг

Поиск:


Этапы решения численным методом




 

Каждое из рассматриваемых здесь дифференциальных уравнений представляет собой закон сохранения какой-либо физической величины. Обычно зависимыми переменными в этих дифференциальных уравнениях являются удельные свойства, т.е. отнесенные к единице массы. Примерами являются массовая концентрация, скорость, удельная энтальпия.

Вопрос: какая величина не является удельным свойством, но которая часто используется?

Члены дифференциального уравнения такого типа выражают воздействие на единицу объема. Пусть поток некоторой переменной Ф.

Рассмотрим объем

- поток, втекающий через грань

- вытекающий поток

Разность между втекающим и вытекающим потоком:

Аналогично для двух других осей можем получить , . Замечая что - объем, получим чистое истечение на единицу объема

Такая интерпретация особенно полезна ввиду того, что, как будет видно ниже, построение численного метода будет выполняться на основе принципа баланса для контрольного объема. К единице объема относиться также член , который описывает скорость изменения соответствующего свойства в единице объема.





Дата добавления: 2015-05-06; просмотров: 497 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.