Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определители второго и третьего порядков




Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными.

Пусть дана система (1)

Если обе части первого уравнения умножить на , а второго – на и уравнения почленно вычесть, то получим Аналогично, если первое уравнение умножить на и вычесть из него второе уравнение, умноженное на , то получим Если ¹ 0, то х = у = . Выражения, стоящие в числителях и знаменателях полученных формул, имеют одинаковую структуру. Для их составления используется четыре числа. Если числа, используемые для знаменателя, записать в виде матрицы , то знаменатели получаются по правилу: из произведения элементов одной диагонали таблицы вычитается произведение элементов второй диагонали. Используя отмеченное правило, введём понятие определителя.

Для матрицы диагональ, на которой стоят элементы , называется главной диагональю, вторая диагональ называется побочной диагональю.

Определение 2. Определителем 2-го порядка (определителем матрицы ) называется число, равное разности произведения элементов главной диагонали и произведения элементов побочной диагонали.

Определитель матрицы обозначается .

Обозначим D = , D1 = , D2 = . Используя определение 2, получим, что система (1) имеет единственное решение тогда и только тогда, когда D ¹ 0. Это решение можно найти по формулам х = , у = (2). Эти формулы называются формулами Крамера.

Пусть дана система трёх уравнений с тремя неизвестными:

(3)

Умножим первое уравнение на , второе уравнение – на , третье уравнение – на и почленно сложим. Получим х × =

= . Легко заметить, что коэффициент при х и правая часть составлены из девяти чисел по одному и тому же закону.

Пусть дана матрица А = .

Определение 3. Определителем матрицы А (определителем третьего порядка) называется число, равное D = (4).

Равенство (4) называется разложением определителя по элементам первого столбца. Итак, вычисление определителя третьего порядка сводится к вычислению определителей второго порядка. Если вычислить определители второго порядка, входящие в формулу (4), то получим, что (5).

Используя последнюю формулу, непосредственным вычислением можно получить:

1. Определитель не изменится, если в нём строки и столбцы поменять местами (эту операцию называют транспонированием определителя). Следовательно в определителе строки и столбцы равноправны..

2. D = .

Итак, определитель можно разлагать по любому столбцу. Можно заметить, что знак перед множителем равен . Так как в определителе строки и столбцы равноправны, то аналогичные разложения имеют место и по любой строке определителя (запишите их самостоятельно).

3. Если в определителе одна из строк (или столбцов) целиком состоит из нулей, то определитель равен нулю.

4. Системы (3) имеет единственное решение тогда и только тогда, когда D ¹ 0. Это решение можно найти по формулам: х = , у = , (6),

где D1, D2, D3 получаются из определителя D заменой первого, второго, третьего столбца соответственно столбцом свободных членов. Формулы (6) тоже называются формулами Крамера.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 449 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2320 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.