Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение с разделяющимися переменными




у' = f 1(xf 2(y).

Решение.

dy/dx = f 1(xf 2(y) |× dx / f 2(y), f 2(y) ≠ 0,

dy/ f 2(y) = f 1(xdx,

общее решение (общий интеграл) уравнения.

Случай f 2(y) = 0 рассматривается с помощью подстановки в исходное уравнение.

Пример 2.11. Решить уравнение

Решение.

dy/dx = у 2 сosxdx / у 2, у ≠ 0,

dy / у 2 = cosxdx,

–1/ y = sinx + C,

y = –1/(sinx + C) – общее решение.

Рассмотрим случай у = 0.

Подставляя в исходное уравнение у = 0, получаем:

0' = 02 cosx, 0 = 0 – верно Þ у = 0 – решение уравнения.

Это решение не может быть получено как частное решение общего решения ни при каком значении С.

Ответ: y = –1/(sinx + C), у = 0.

2.81. Решить уравнения:

1) 2) 3)

4) 5) 6)

7) 8)

2. Однородные уравнения 1-го порядка

Уравнения решают с помощью замены

После подстановки z и в исходное уравнение получается уравнение с разделяющимися переменными (см. п. 1).

2.82. Решить уравнения:

1) 2) 3)

4) 5)

6)

3. Линейные уравнения 1-го порядка

у ' + p (xy = f (x),

где p (x), f (x) – непрерывные функции.

Пример 2.12. Решить уравнение у ' + xy = x.

Решение.

Пусть тогда и уравнение принимает вид

Группируя первое и третье слагаемые, получаем

Равенство будет верным, если

Найдем частное решение первого уравнения системы:

Подставим полученное решение во второе уравнение системы и найдем его общее решение:

C помощью замены получаем общее решение:

Подставляя найденные решения и в равенство получаем решение исходного уравнения:

Ответ:

 

Задача Коши для уравнения 1-го порядка имеет вид

Пример 2. 13.

Решить задачу Коши

Решение.

Найдем общее решение уравнения :

dy / dx = х 2 уdx/у, у ≠ 0,

dy / у = x 2 dx,

ln| y | = х 3 /3 + С.

Подставим в это решение х = 2 и у = 1 (см. условие у (2) = 1):

ln|1| = 23 /3 + С,

0 = 8/3 + С Þ С = – 8/3.

Подставляя это значение в общее решение, получаем

Ответ: ln|y| = (х3 – 8)/3.

2.83. Решить уравнение или задачу Коши:

1) 2)

3) 4)

5) 6)

7) 8)

 

4. Линейные однородные уравнения 2-го порядка

С постоянными коэффициентами

,

где p, q R.

Решение.

Составим характеристическое уравнение и решим его.

Возможны три случая:

1) k 1,2 R, k 1 k 2 (дискриминант D > 0);

2) k 1 ,2 R, k 1 = k 2 = k (D = 0);

3) k 1,2 = C (D < 0).

Каждому из этих случаев соответствует общее решение уравнения:

1)

2)

3)

Пример 2.14.

Решить уравнения:

1)

2)

3)

4)

Решение.

1) Ответ:

2) Ответ:

3) Ответ:

4)

Ответ:

2.84. Решить уравнения:

1) 2) 3)

4) 5)

6) 7) 8)

5. Уравнения вида y(n) = f (x)

Решение.

…,

Пример 2. 15.

Решить уравнение: 1. 2.

Решение.

1.

Ответ:

2.

Ответ:

2.85. Установить вид частного решения неоднородного уравнения 2-го порядка с постоянными коэффициентами, если:

1) 2)

3)

4)

2.86. Решить уравнение или задачу Коши:

1) 2)

3)

4)

5)

6)

 

Последовательности и ряды

 

Определение. Числовой последовательностью называется функция натурального аргумента

Пример 2.16.

Найти первые три члена последовательности

Решение.

 

2.87. Найти пять первых членов последовательности , если:

1) 2) 3) 4)

 

2.9.1. Предел последовательности

 

Определение. Число А называется пределом последовательности , если для любого сколь угодно малого числа ε > 0 найдется такой номер N = N (ε), что для всех n ≥ N будет выполняться неравенство − аnA −< ε.

Пример 2.17. Доказать, используя определение предела последовательности, что предел последовательности равен нулю.

Решение.

Пусть ε > 0. Составим неравенство и решим его относительно n. Получаем:

Итак, для любого ε > 0 существует такой номер (или целой части дроби), что для всех выполняется неравенство , т. е. предел последовательности равен нулю. Например, при ε = 0,1 N = 21.

2.88. Доказать, используя определение предела последовательности, что

;

Пример 2.18. Найти предел последовательности .

Решение.

2.89. Найти предел последовательности:

1) 2) 3) 4)

5) 6) 7) 8)

2.90. Вычислить пределы, используя равенство

Числовые ряды

Определение. Числовым рядом называется сумма

где ап

Пример 2.19.

Определение. Числовой ряд называется сходящимся, если

где частичная сумма ряда;

Sсумма ряда.

В противном случае ряд называется расходящимся.

2.91. Записать формулу общего члена ряда:

2.92. Найти сумму числового ряда:

1) 2) 3)

 





Поделиться с друзьями:


Дата добавления: 2016-10-27; Мы поможем в написании ваших работ!; просмотров: 313 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.