Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости




1. Дан куб ABCDA1B1C1D1. Точка М – середина B1C1, N – середина D1С1, К – середина DC, О – точка пересечения диагоналей квадрата ABCD. Определите угол между прямой и плоскостью и найдите его величину:

а) AB1 и АВС; б) АС и АA1В; в) MN и DD1C;

г) MN и DD1B; д) АМ и АВС; е) АС и MKN;

ё) АК и МКN; ж) АC1 и ВСC1; з) DC1 и АСC1;

и) В1D и АСC1; й) АА1 и AMN; к) DD1 и AMN.

2. MABCD – четырёхугольная пирамида, основание которой квадрат ABCD. МD перпендикулярно плоскости АВС, MD = AB, O – точка пересечения диагоналей квадрата ABCD. Определите угол между прямой и плоскостью и найдите его величину:

а) МС и АВС; б) МВ и АВС; в) МА и АВС;

г) МО и АВС; д) АС и МDС; е) АD и MDC;

ё) АВ и MDC; ж) АС и ОАМ; з) АО и ВСМ.

3. Стороны треугольника равны 51, 30 и 27. Из вершины меньшего угла треугольника проведён к его плоскости перпендикуляр длиной 10. Найдите расстояние от концов перпендикуляра до противоположной стороны треугольника.

4. Диагонали ромба равны 60 и 80. В точке пересечения диагоналей к плоскости ромба проведён перпендикуляр длиной 45. Найдите расстояние от конца перпендикуляра до стороны ромба.

 

Угол между плоскостями. Перпендикулярность плоскостей

1. Дан куб ABCDA1B1C1D1. Точка М – середина ребра D1С1. Укажите взаимное расположение плоскостей и найдите угол между ними:

а) A1BА и D1СD; б) A1B1C1 и DD1С; в) A1BD и B1D1С;

г) B1АС и ADC; д) A1BD и C1DВ; е) A1BD и СC1А;

ё) АB1C1 и ADC; ж) A1МА и B1C1С; з) A1МА и ВB1D;

и) МA1D и СA1D.

2. В правильной пирамиде SABC высота SM равна 3, сторона основания АВ равна 18. Найдите угол между боковой гранью и основанием.

3. В прямоугольном параллелепипеде ABCDA1B1C1D1 ребро АВ равно 2, ребро АA1 равно 4. Найдите тангенс угла наклона диагонального сечения AB1C1D к основанию.

4. SABCD – правильная четырёхугольная пирамиды, в которой сторона основания равна 2, а угол между боковой гранью и основанием равен 45°. Найдите высоту пирамиды.

Раздел 5. МНОГОГРАННИКИ.

1. Найдите площадь полной поверхности прямоугольного параллелепипеда ABCDA1B1C1D1, если

а) ABCD – квадрат со стороной 2, а AA1 = 3;

б) AB = 6, AC = 10, AB1 = 10;

в) ABCD – квадрат со стороной 4, а диагональ AC1 = 6;

г) ABCD – квадрат со стороной 4, а диагональ AC1 наклонена к основанию под углом 450;

д) AB = 2, BC = 4, а плоскость AB1C1 наклонена к плоскости ABC под углом 600.

2. Найдите объём прямоугольного параллелепипеда, если:

а) его измерения 2 см, 3 см и 4 см;

б) площадь его основания 3 см², а высота 5 см;

в) диагональ его основания равна 5 м, одна из сторон основания равна 4 м, а высота равна 2 м;

г) высота равна 3 см, диагональ его основания равна 2 см, а угол, образованные ею с одной из сторон основания, равен 30°.

3. Ширина комнаты 4 м, длина 5м, а высота потолка 3м. Общая площадь окон и двери 8 м2. Найдите площадь обоев, которыми оклеены стены.

4. Прямоугольный параллелепипед с измерениями 1 м, 3 м и 5 м помещён внутрь куба с ребром 6 м. Сделайте рисунок для такого случая и найдите объём свободного места внутри куба.

5. Найдите объём куба, если его диагональ равна d.

6. Измерения прямоугольного параллелепипеда равны 6, 16 и 18. Найдите ребро равновеликого ему куба.

7. В основании прямого параллелепипеда лежит параллелограмм. Найдите его объём, если:

а) высота параллелепипеда 3 см, стороны основания 4 см и 5 см, а один из углов основания 135°;

б) высота параллелепипеда 5 см, диагонали основания 6 см и 10 см, а угол между диагоналями 30°.

8. Найдите объём правильной n-угольной призмы, у которой каждое ребро равно a, если: а) n = 3; б) n = 4; в) n = 6; г) n = 8.

9. Наибольшая диагональ правильной шестиугольной призмы равна 8 см и составляет с боковым ребром угол 30°. Найдите объём призмы.

10. В основании прямой призмы с высотой, равной 5, лежит трапеция. Найдите объём призмы, если:

а) трапеция прямоугольная с основаниями 4 и 2 и высотой 3;

б) трапеция равнобедренная с боковыми сторонами длины 10 и основаниями 18 и 6.

11. Найдите объём прямой призмы АВСА1В1С1, если АВ=ВС=m, угол ABC равен φ и ВВ1 = BD, где BD – высота треугольника АВС.

12. Найдите объём треугольной призмы АВСА1В1С1, высота которой 3, если:

а) АВС – прямоугольный треугольник с катетами 2 и 4;

б) АВС – равносторонний треугольник со стороной 1.

13. Найдите объём треугольной призмы АВСА1В1С1, если:

а) площадь основания АВС равна 5 см², а боковое ребро АА1 равно 2 см и наклонено к плоскости основания под углом 30°;

б) АВС – равносторонний треугольник со стороной 3 см, а боковое ребро ВВ1 равно 3 см и наклонено к плоскости основания под углом 45°.

в) АВС – треугольник со сторонами 5, 12 и 13, а высота А1М грани АА1В1В наклонена к плоскости основания под углом 60° и равна 2.

г) АВС – треугольник со сторонами 6, 8 и 10, высота боковой грани АА1В1В равна 4, а угол между основанием и этой гранью равен 45°.

14. Основанием наклонного параллелепипеда является прямоугольник со сторонами a и b. Боковое ребро равно и составляет со смежными сторонами основания углы, равные φ. Найдите объём параллелепипеда.

15. Найдите объём пирамиды с высотой H, если:

а) H = 2 м, а основанием служит квадрат со стороной 3 м;

б) H= 2,2 м, а основанием служит треугольник АВС, в котором АВ = 20 см, ВС = 13,5 см, угол АВС равен 30°.

16. Найдите объём правильной четырёхугольной пирамиды, все рёбра которой 2.

17. Рассматривается четырёхугольная пирамида MABCD такая, что в основании её лежит квадрат со стороной 2, а её высота MA равна 3. Найдите площадь поверхности этой пирамиды.

18. Вычислите площадь боковой поверхности правильной треугольной пирамиды, если её высота равна 9, апофема – 18.

19. В правильной шестиугольной пирамиде апофема равна 15, высота – 12. Найдите площадь полной поверхности пирамиды.

20. Рассматривается правильная треугольная пирамида MABC, сторона основания которой равна 4, а угол наклона плоскости боковой грани MAB к плоскости основания равен 60°. Пусть MO – высота пирамиды, точка K – середина ребра AB. Найдите:

а) длину отрезка OK;

б) длину высоты MO;

в) площадь основания ABC;

г) объём пирамиды MABC.

21.Найдите объём треугольной пирамиды MABC, если:

а) все плоские углы с вершиной А прямые и AM = AB = AC = 1 см;

б) АВС – правильный треугольник со стороной 2 см, а ребро МА равно 3 см и наклонено к плоскости основания под углом 30°;

в) АВС – равнобедренный треугольник со сторонами АВ = ВС = 2 см и углом АВС = 120°, грань МАВ имеет площадь, равную 4 см², и перпендикулярна основанию АВС;

г) АВС – прямоугольный треугольник, гипотенуза АВ которого равна 13 см, а катет АС = 12 см, вершина М проектируется в середину гипотенузы АВ, грань МАС образует с основанием угол 45°;

д) она является правильной пирамидой, ребро основания которой равно 2 см, а боковое ребро наклонено к плоскости основания под углом 45°;

е) она является правильным тетраэдром, все рёбра которого равны 1.

д) угол наклона боковых граней к основанию.

22.Высота правильной треугольной пирамиды SABC равна 3 а высота её основания равна 9. Найдите:

а) боковое ребро;

б) апофему;

в) сторону основания;

г) плоский угол при вершине S;

д) угол наклона боковой грани к основанию.

23.Сторона основания правильной шестиугольной пирамиды равна 2 , высота пирамиды равна 4. Найдите:

а) боковое ребро;

б) высоту основания пирамиды;

в) апофему;

г) расстояние от центра основания O до плоскости боковой грани;

д) расстояние от вершины A до плоскости BSC.

24. Найдите площадь боковой поверхности правильной треугольной пирамиды MABC, если:

а) MA = 5, AB = 6;

б) AB = 2, а высота пирамиды MO = 1;

в) AB = 2 и медиана боковой грани (апофемы) MK наклонена к плоскости основания под углом 300;

г) высота MO равна 3, а плоскость боковой грани MAB наклонена к плоскости основания ABC под углом 450.

25. Основанием пирамиды DABC является прямоугольный треугольник АВС, у которого гипотенуза АВ равна 29 см, катет АС равен 21 см. Ребро DA перпендикулярно к плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.

26. Основание пирамиды – квадрат со стороной 16 см, две боковые грани перпендикулярны плоскости основания. Вычислите площадь полной поверхности пирамиды, если её высота равна 12 см.

27. Основанием пирамиды является ромб со стороной 6 см. Каждый из двугранных углов при основании равен 45°. Найдите объём пирамиды, если её высота равна 1,5 см.

28. Основание пирамиды – ромб со стороной 15 см, каждая грань пирамиды наклонена к основанию под углом 45°. Найдите объём пирамиды, если площадь её боковой поверхности равна 300 см².

29. Основание пирамиды – прямоугольник, площадь которого равна 1 м². Две боковые грани перпендикулярны основанию, а две другие наклонены к нему под углами 30° и 60°. Найдите объём пирамиды.

30. Объём правильной пирамиды MABC равен 2 см³. Основание АВС пирамиды – правильный треугольник со стороной 3 см. Найдите угол наклона к основанию бокового ребра МА.

31. Объясните, какой должна быть длина ребра правильного тетраэдра, чтобы его площадь полной поверхности была равна 4 см2.

32. В правильной четырёхугольной усечённой пирамиде площади оснований равны 25 см² и 9 см², боковое ребро образует с плоскостью нижнего основания угол 45°. Вычислите площадь боковой поверхности пирамиды.

33. Найдите объём правильной четырёхугольной пирамиды, если:

а) её высота равна H, а двугранный угол при основании равен β;

б) сторона основания равна m, а плоский угол при вершине равен α.

34. Боковое ребро правильной четырёхугольной пирамиды равно m и составляет с плоскостью основания угол φ. Найдите объём пирамиды.

35. Сколько центров симметрии имеет:

а) параллелепипед;

б) правильная треугольная призма;

в) двугранный угол;

г) отрезок;

д) шар?

36. Сколько осей симметрии имеет:

а) отрезок;

б) правильный треугольник;

в) круг;

г) шар?

37. Сколько плоскостей симметрии имеет:

а) правильная четырёхугольная призма, отличная от куба;

б) правильная четырёхугольная пирамида;

в) правильная треугольная пирамида;

г) шар?

38. Сколько и каких элементов симметрии имеют правильные многогранники:

а) правильный тетраэдр;

б) правильный гексаэдр;

в) правильный октаэдр;

г) правильный икосаэдр;

д) правильный додекаэдр?





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 981 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2377 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.