Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Гармонические колебания. Изображение синусоидальных токов векторами и комплексными числами




 

Гармонические колебания используются в радиовещании, в устройствах связи, в источниках питания, в модемах и т. д. Промышленное напряжение изменяется с частотой 50 Гц. Частоты порядка сотен и тысяч герц применяются в телефонных цепях, самые высокие частоты используются в радиоэлектронике: от 105 и 109 Гц.

Синусоида – единственная периодическая функция, имеющая подобную себе производную. Только при помощи синусоидальных токов можно сохранить неизменными формы кривых напряжений и токов во всех участках сложенной линейной электрической цепи. Это свойство синусоидальных токов позволит относительно просто производить расчет цепей переменного тока.

Гармонические колебание можно записать уравнениями с тригонометри­ческими функциями, изобразить графически или представить в виде векторов на декартовой или комплексной плоскости.

Пусть ток и напряжения изменяются по гармоническому закону:

,

Значения аргументов синусоидальных функций и называются фазами синусоид. Значение фазы в начальный момент времени и называют начальной фазой.

Для расчёта электрических цепей аналитическое задание функции неудобно, так как алгебраические действия с тригонометрическими функциями громоздки.

Графическое представление синусоидальных величин (рис. 2) наглядно.

На графиках положительная начальная фаза отчитывается влево от начала ординат, а отрицательная - вправо. Если у нескольких гармонических величин, изменяющихся с одинаковой частотой, начала синусоид не совпадают по времени, то они сдвинуты друг относительно друга по фазе. Разность углов , равная разности начальных фаз, называется углом сдвига фаз. Угол сдвига фаз одноименных функций обозначают буквой , а равноименных .

.

Графическое представление синусоидальных величин из-за сложности построения синусоид применяют сравнительно редко. Изобразить гармонические величины можно векторами на декартовой плоскости (рис. 3). Совокупность векторов, изображающих синусоидальные э. д. с., напряжения и тока одной частоты, в соответствии со значениями их амплитуд и фазовых углов называют векторными диаграммами. Построение векторных диаграмм рационально начинать для начального момента времени t=0. В этом случае положение вектора определяется начальной фазой. На рис. 3 показаны векторные диаграммы напряжения и тока, изображенных синусоидами на рис. 2.

Применение векторных диаграмм делает анализ электрической цепи наглядным. В этом методе сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием их векторов.

Расчёт цепей переменного тока облегчается, если изображать синусоидально изменяющиеся токи, напряжения, э. д. с. и т. д. комплексными числами. На комплексной плоскости ось абсцисс плоскости декартовых координат совмещают с осью вещественных или действительных значений (ось +1) комплексной плоскости. Ось ординат совмещают с осью мнимых чисел и величин (ось + ). (В электронике мнимую единицу обозначают ).

Каждому вектору на комплексной плоскости соответствует определенное компле­ксное число, которое может быть записано в алгебраической, тригонометрической и показательной форме. Например, току , соответствует комплексное число записанные в алгебраической форме:

.

В тригонометрической форме: .Используя подстановку Эйлера , можно получить показательную форму записи .

Фазовый угол определяется по проекциям вектора на оси координат +1 и +j:

Модуль комплексной амплитуды тока находится по формуле:

Мнимая составляющая комплексного числа вектора на комплексной плоскости определяет синусоидальное изменение сигнала и обозначается символом Im (Imagine – воображаемый), например,

.

Действительная составляющая определяет косинусоидальное изменение сигнала и обозначается символом Re (Real – действительный)

.

Комплексные величины , называются комплексными амплитудами гармонического сигнала, которые содержат информацию об амплитуде и начальной фазе.

Символический метод применяется для расчета. Он дает возможность выразить в алгебраической форме геометрические операции с векторами переменного тока, благодаря чему является возможным применять все методы расчета цепей постоянного тока для цепей переменного тока.

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 844 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2539 - | 2233 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.