Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дифференциальное уравнение конвективного теплообмена




Для вывода дифференциального уравнения конвективного теплообмена в установившемся потоке жидкости (газа) выделяют элементарный параллелепипед с гранями dx, dy, dz (рис. 7.2) и составляют для него тепловой баланс, приняв физические параметры λ, с р и ρ постоянными. Скорости движения жидкости в направлении осей x, y и z, соответственно – wx, wy и wz. Температура жидкости t изменяется вдоль граней параллелепипеда. Теплоперенос в жидкости осуществляется путем конвекции и теплопроводности. Все подведенное к параллелепипеду тепло затрачивается только на изменение его энтальпии.

Количество тепла, которое вводится жидкостью путем конвекции по направлению оси х через грань dydz за время d τ,

.

За это же время через противоположную грань параллелепипеда путем конвекции жидкостью выводится количество тепла

,

или

.

Разность между количествами введенного и выведенного тепла в направлении оси х за время d τ составит:

.

Аналогично в направлении осей y и z

;

.

Полная разность между количествами введенного и выведенного путем конвекции тепла в объеме параллелепипеда за время d τ

.

На основании уравнения неразрывности потока (1.34)

.

Тогда конвективная составляющая теплового потока

,

где – объем параллелепипеда.

Количество тепла, которое вводится в параллелепипед жидкостью путем теплопроводности за время d τ, в соответствии с уравнением (7.21)

.

Суммарное количество тепла, подведенное конвекцией и теплопроводностью

Это тепло dQ, согласно первому началу термодинамики, равно изменению энтальпии жидкости в объеме параллелепипеда

.

Таким образом,

.

В результате простейших преобразований последнего равенства, получим

,

либо

, (7.66)

где – коэффициент температуропроводности.

Полученное уравнение (7.66) является дифференциальным уравнением конвективного теплообмена, или уравнением Фурье-Кирхгофа. Оно выражает в наиболее общем виде распределение температур в движущемся потоке жидкости (газа).

Для твердых тел wx = wy = wz = 0 и уравнение (7.66) превращается в дифференциальное уравнение теплопроводности (7.23).

При установившемся процессе теплообмена , тогда уравнение конвективного теплообмена для этого случая

. (7.67)

Ввиду сложности уравнения (7.66) для практического использования его подобно преобразовывают с учетом условий однозначности, т.е. представляют в виде функции от критериев подобия. Для этого, с целью более полного описания конвективного переноса тепла, дифференциальное уравнение Фурье-Кирхгофа дополняется граничными условиями, вытекающими из закона теплообмена на границе твердого тела и окружающей его среды.

 

Тепловое подобие

На практике процессы теплообмена осуществляются с помощью потоков разнообразных жидкостей и газов при различных режимах их движения в аппаратах различной геометрической формы и размеров. Однако условия подобия во всех случаях одинаковы и сводятся к подобию геометрических параметров, полей скоростей и температуры, а также физических констант. При этом должно соблюдаться подобие переноса тепла, как в пограничном слое, так и в ядре потока жидкости (газа).

Подобие переноса тепла в пограничном слое можно установить из краевых условий теплообмена на границе твердое тело – жидкость (газ), воспользовавшись зависимостью (7.64):

.

Применив тот же метод подобного преобразования уравнений, что и при выводе критериев гидродинамического подобия (см. раздел 1.3.6), разделим правую часть последнего равенства на левую:

.

Заменив на характерный (определяющий) геометрический размер , получим безразмерный комплекс величин, называемый критерием Нуссельта:

. (7.68)

Критерий Нуссельта характеризует теплоперенос через пограничный слой в форме соотношения количества тепла, передаваемого конвекцией, и теплопроводностью.

Аналогом критерия Нуссельта при нестационарном теплообмене между твердым телом и жидкостью или газом является критерий Био:

, (7.69)

где – коэффициент теплопроводности твердого тела.

Условия подобия в ядре потока определяются из уравнения Фурье-Кирхгофа (7.66). Для одномерного движения потока жидкости его можно представить в виде

. (7.70)

Поделив члены левой части на правую часть, отбросив знаки математических операторов и заменив величины и на характерный геометрический размер и осредненную скорость соответственно, получим

;

.

Полученный комплекс обычно для удобства заменяют обратной величиной , которая выражает необходимое условие подобия неустановившихся процессов теплообмена. Этот безразмерный комплекс получил название критерия Фурье:

. (7.71)

Комплекс является мерой соотношения между теплом, переносимым конвекцией и теплопроводностью при конвективном теплообмене, и носит название критерия Пекле:

. (7.72)

Необходимым условием теплового подобия являются предшествующие ему гидродинамическое и геометрическое подобия. Гидродинамическое подобие определяется критериями гомохронности Но, Рейнольдса Re и Фруда Fr, а геометрическое – постоянством отношений основных геометрических размеров поверхности (стенки) к некоторому характерному размеру L. В качестве характерного линейного размера для трубных поверхностей, которые часто используются в качестве теплопередающих, принимают диаметр трубы L = d, иногда – длину трубы L = l, радиус кривизны изогнутой трубы L = R и т.д. В результате критериальное уравнение конвективного теплообмена выражается функцией вида

, (7.73)

где – симплексы геометрического подобия.

Равенство критериев Нуссельта является следствием подобия геометрических и физических характеристик, а также подобия полей скоростей и температур. Поэтому Nu не является определяющим. В связи с этим обобщенную зависимость, описывающую кинетику переноса тепла в движущихся средах, представляют в виде

. (7.74)

Критерий Пекле обычно представляют в виде двух безразмерных комплексов

,

где – критерий Прандтля, характеризующий физические свойства теплоносителя (жидкости или газа).

По физическому смыслу критерий Pr определяет соотношение полей скоростей и температур в потоке. Для капельных жидкостей он зависит от температуры (с повышением температуры увеличивается), а его численные значения лежат в пределах 3 ÷ 300. Для газов критерий Прандтля не зависит ни от температуры, ни от давления, являясь постоянной величиной для газов одинаковой атомности (для одноатомных газов Pr = 0,67; для двухатомных Pr = 0,72; для трехатомных Pr = 0,8; для четырехатомных и более Pr = 1).

С введением критерия Прандтля уравнение (7.74) принимает вид:

. (7.75)

При установившихся тепловых процессах и одинаковой геометрической форме потоков из уравнения (7.75) исключаются критерии Fo и Ho, содержащие время, и геометрические симплексы, тогда

. (7.76)

При рассмотрении конкретных задач теплообмена уравнение (7.76) может быть видоизменено.

Так, при вынужденном движении, когда влияние сил тяжести на гидродинамику потока пренебрежительно мало, критерием Фруда можно пренебречь и критерий Нуссельта будет являться функцией лишь двух критериев:

. (7.77)

При свободном движении жидкости (в условиях естественной конвекции) из критериального уравнения исключают критерий Рейнольдса:

. (7.78)

Ввиду сложности определения скорости при естественной конвекции, входящей в критерий Фруда, последний заменяют производным критерием Архимеда, характеризующим естественную конвекцию, обусловленную разностью плотностей жидкости (газа) в различных точках потока:

,

где ρ и ρ0 – плотности холодной и нагретой жидкости (газа).

Поскольку в тепловых процессах разность плотностей в различных точках системы обусловливается разностью температур Δ t нагретой и холодной жидкости, комплекс в критерии Архимеда целесообразно выразить через произведение bΔ t (b – температурный коэффициент объемного расширения). Полученный новый критерий является критерием Грасгофа:

. (7.79)

Таким образом, критерий Gr представляет собой определяющий критерий теплового подобия при естественной конвекции, когда движение жидкости целиком обусловлено самим процессом теплообмена, а уравнение конвективного теплообмена для этого случая

. (7.80)

Для газов при Pr ≈ 1 уравнение (7.79) превращается в функциональную зависимость критерия Нуссельта от критерия Грасгофа.

Помимо приведенных критериев теплового подобия в литературе часто встречаются производные критерии, составленные из указанных выше:

критерий Стантона , (7.81)

который отражает соотношение количества тепла, передаваемого конвекцией, и тепла, переносимого движущимся потоком;

критерий Релея ; (7.82)

критерий Грэтца , (7.83)

(G – массовый расход жидкости) характеризует конвективный теплоперенос при ламинарном режиме.

.

В соответствии с полученными критериальными уравнениями обрабатываются опытные данные по переносу тепла конвекцией и представляются в виде степенных уравнений. Например, уравнение (7.77) – в виде ; уравнение (7.79) – в виде и т.д.

При решении практических задач по найденному из соответствующего критериального уравнения значению критерия Нуссельта определяют коэффициент теплоотдачи:

.

Критериальные зависимости в виде степенных уравнений, как уже указывалось, решают чисто эмпирически и применимы они лишь в тех пределах изменения аргумента, в которых подтверждены опытом. Поэтому области их надежного применения ограничены пределами, указываемыми в каждом отдельном случае. Ограничения эти, в основном, связаны с характером и режимом движения потока теплоносителя, его геометрической формой и размерами, изменением агрегатного состояния.

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1533 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.