Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Отыскание наибольшего и наименьшего значений функции, заданной на отрезке




Наибольшее значение достигается в некоторой точке х0Î [a,b]. При этом возможны лишь следущие 3 случая: 1) х0=а, 2) х0=b, 3)х0Î(a,b). Пусть х0Î(a,b). Тогда х0 – точка локального экструмума и, если существует f¢(x0), f¢(x0)=0. Однако производная f¢(x0) может и не существовать.

Критической точкой функции f(x) называется точка, в которой производная f¢(x) либо не существует, либо равна нулю.

Из определения вытекает, что точка локалького экстремума x0 является критической точкой функции f(x). Предположим, что критические точки функции f(x) на интервале (a; b) образуют конечное множество {x1,x2, …,xn}. Из сказанного выше следует, что точка x0, в которой функция принимает наибольшее (или наименьшее) значение, совпадает с одной из точек: a,b,x1,…xn. Поэтому для максимального значения функции f(x) на отрезке [a,b] имеем равенство fmax=max{f(a),f(b),f(x1),…f(xn)}. Аналогично для минимального значения fmin=min { f(a),f(b),f(x1),…f(xn)}.


18. Общая схема исследования функции и построения ее графика.

1. Область определения функции, поведение функции на границе области определения. Асимптоты. Точки пересечения с осями.

(Справка: для нахождения асимптот рассматриваем односторонние пределы (вертикальная асимптота), и пределы при х→∞ для выражений f (x)/х (предел равен к) и f (x)-кх (b) (наклонная асимптота у=кх+b). Подробнее вопр.1.3.

2. Четность, нечетность. Периодичность.

(справка: четная f (-x)= f (x); нечетная f (-x)=- f (x). Периодичность f (x+Т)= f (x)= f (x-Т))

3. Монотонность и экстремумы. (Функции, убывающие или возрастающие на некотором числовом промежутке, называются монотонными. Находим производную, критические точки. промежутки возрастания и убывания, точки максимума и минимума).

4.Выпуклость, вогнутость, точки перегиба. (Для этого находим вторую производную, точки перегиба, распределяем знаки второй производной: -вогнутая, +выпуклая)

5.График функции с обозначением всех найденных точек и асимптот.

Теорема Ферма

Пусть ф-я у = f(x) определена в некотором промежутке [a;b] и во внутренней точке этого промежутка спринимает наибольшее или наименьшее значение. Если в этой точке существует конечная производная, то она = 0.

С ¹ a, с ¹ b, f(c) – max. Докажем, что f'(c) = 0.

Т.к. f(c) - max, то для всех точек f(x) £ f(c) при xÎ[a;b]

f(x) - f(c) £ 0

Т.к. по условию теоремы в точке с ф-я f имеет производную, то можно рассмотреть производную f'(c) = lim (f(x)-f(c))/(x-c)

1) x-c < 0 f’(c)³ 0ü Þ f’(c) = 0

2) x-c > 0 f’(c)£ 0þ

Теорема Ролля

Эта теорема позволяет отыскать критические точки, а затем с помощью достаточных условий исследовать ф-ю на экстремумы.

Пусть 1) ф-я f(x) определена и непрерывна на некотором замкнутом промежутке [a;b]; 2) существует конечная производная, по крайней мере, в открытом промежутке (a;b); 3) на концах промежутка ф-я принимает равные значения f(a) = f(b). Тогда между точками a и b найдется такая точка с, что производная в этой точке будет = 0.

Док-во:

По теореме о свойстве ф-ий, непрерывных на отрезке, ф-я f(x) принимает на этом отрезке свое max и min значение.

f(x1) = M – max, f(x2) = m – min; x1;x2 Î [a;b]

1) Пусть M = m, т.е. m £ f(x) £ M

Þ ф-я f(x) будет принимать на интервале от a до b постоянные значения, а Þ ее производная будет равна нулю. f’(x)=0

2) Пусть M>m

Т.к. по условиям теоремы f(a) = f(b) Þ свое наименьшее или наибольшее значение ф-я будет принимать не на концах отрезка, а Þ будет принимать M или m во внутренней точке этого отрезка. Тогда по теореме Ферма f’(c)=0.

Теорема Лагранжа

Пусть 1) ф-я f(x) определена и непрерывна на интервале [a;b]

2) Существует конечная производная, по крайней мере, в открытом интервале (a;b).

Тогда между a и b найдется такая точка с, что для нее выполняется следующее равенство: (f(b)-f(a))/(b-a)=f’(c), a < c< b

Док-во:

Введем вспомогательную ф-ю F(x).

F(x) = f(x) - f(a) - [(f(b)-f(a))/(b-a)]*(x-a)

Эта ф-я удовлетворяет всем условиям теоремы Ролля:

1) она непрерывна как разность между непрерывной и линейной функциями;

2) в открытом интервале (a;b) существует конечная производная этой ф-ии.

F’(x) = f’(x) - (f(b)-f(a))/(b-a)

3) на концах промежутка в точках a и b эта ф-я равна 0

F(a) = f(a) - f(a) - (f(b)-f(a))/(b-a)*(а - а) = 0

F(b) = f(b) - f(a) - (f(b)-f(a))/(b-a)*(b-a) = 0

Þ производная в какой-либо внутренней точке с равна 0. F’(с) = 0

f’(c) - (f(b)-f(a))/(b-a) = 0, отсюда

f’(c) = (f(b)-f(a))/(b-a)

Геометрическое истолкование

CB/AC = (f(b)-f(a))/(b-a)

На дуге АВ найдется по крайней мере одна точка М, в которой касательная || хорде АВ.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 555 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2292 - | 2064 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.