Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Производные и дифференциалы высших порядкров




Если для функции y=f(x) определена производная у(к-1) порядка (к-1), то производную у(к) порядка к (при условии ее существования) определяют как производную от производной порядка (к-1), т.е. у(к) = (у(к-1))′. В частности, у’’=(y’)’- производная второго порядка, y’’’=(y’’)’ – третьего и т.д.

При вычислении производных высших порядков используют те же правила, что и для вычисления у’.

Табл. Произ-х высшего порядка:

f(x) fn(x)
Xa Ex Ekx Akx Lnx Logax Sinkx Cos kx A(a-1)*(a-2)*…*(а-n+1)*х a-n Ех Kn*ekx (K* Lna)n*akx (-1)n-1*(n-1)!/xn (-1)n-1*(n-1)!/(xn*lna) kn*sin(kx+n*π/2) kn*cos (kx+n*π/2)

 

Дифференциалы высших порядков ф-и y=f(v) последовательно определяются таким образом:

d2y=d(dy) – диф-л 2-го порядка

d3y=d(d2y)…

dny=d(d n-1 y) - диф-л n-го порядка

Если ф-я y=f(v), где v – независимая переменная или линейная ф-я v=кх+в переменной х, то d2y=y’’(dv)2, d3y=y’’’(dv)3,…, dny=y(n)(dv)n.

Если же y=f(v), где v=g(x)≠кх+в, то d2y=f’’(v)*(dv)2+ f’(v)d2v и т.д. (т.е. св-во инвариантности не выполняется).

Формула Тейлора.

Пусть функция f(x) имеет n производных в точке x0. Многочлен

T(x) = f(x0) + ((f’(x0))/1!)(x – x0)1 + (f ”(x0))/2!(x – x0)2 +…+ (f (n)(x0))/n!(x – x0)n

Называется n-м многочленом Тейлора функции f(x) в точке x0.

Пусть функция f(x) имеет в ε – окрестности точки x0 (n + 1) производных. Тогда для любой точки х из этой окрестности найдется точка с, расположенная между точками х и х0, для которой выполняется следующая формула

F(x) = T(x) + (f(n+1)(c) / (n + 1)!)(x – x0)n+1 – формула Тейлора,

где Т(x) – n-й многочлен Тейлора функции f(x) в точке х0,

rn(x) = (f(n+1)(c) / (n + 1)!)(x – x0)n+1 – остаточный член в формуле Лагранжа.

Предположим, что (n+1)-я производная функция f(x) ограничена в окрестности точки х0. Тогда rn(x) является бесконечно малой более высокого порядка, чем (х-х0)n при х ® х0. (lim (rn(x)/(х-х0)n) = lim [((f(n+1)(c))/(n+1)!)(x-x0)] = 0 – в силу

Х®Хо Х®Хо

Ограниченности f(n+1) (c) в окрестности х0.) Следовательно ошибка в приближенном равенстве f(x)» Tn(x) (*) также является бесконечно малой более высокого порядка, чем (х – х0)n, когда х ® х0.

Формула (*) применяется для приближенных вычислений.

Используя равенство (*) можно подучить, например следующие формулы (при х®0):

1) (1+x)a» 1 + (a/1!)x + (a(a-1)/2!)x2 +…+ (a(a-1)…(a-n+1)/n!)xn,

2) ex» 1 + x/1! + x2/2! +…+ xn/n!,

3) ln(1+x)» x – x2/2 + x3/3 – x4/4 +…+(-1)n+1xn/n

4) sin x» x – x3/3! + x5/5! – x7/7! +…+(-1)kx2k+1/(2k+1)!,

5) cos x» 1 – x2/2! + x4/4! – x6/6! +…+(-1)kx2k/(2k)!,

где в каждом случае ошибка является бесконечно малой относительно хn.


 

 

Условия монотонности функции.

Если у=f(x) непрерывна на [a,b] и дифференцируема на этом отрезке, то у=f(x)-const, тогда и только тогда, когда f¢(x)=0 при "х'[a,b]. Следствие у=f(x), y=g(x) непрерывна и диффиренцируема на (a,b) и f¢(x)=g¢(x), то f(x)=g(x)+C.

y=f(x) возрастает на Х, если для любых х12'Х, таких что х1<x2Þ f(x1)<f(x2), убывает если x1<x2Þ f(x1)>f(x2).

Достаточное условие монотонности. Если функция непрерывна, дифференцируема на (a,b) и внутри (a,b) сохраняет знак, то функция у=f(x) монотонна.

Докажем для f¢(x)>0 Þ y=f(x) – возрастает на (a,b) (для убывающей функции доказательство аналогичное)

Доказательство.

Возьмём точки из отрезка (a,b) х1 и х2, такие что х12. По теореме Лагранжа найдётся тоска с, приналежащая отрезку, для которой f(x2)-f(x1)= f¢(c)(x2-x1). Так как х1<c<x2, то точка с является внутренней точкой промежутка Х. Поэтому f¢(c)³0 и f(x2)³f(x1). Таким образом, мы доказали, что функция f(x) не убывает на промежутке Х.

Условия сущ. экстремула

Необходимое условие существования экстремума. Для того, чтобы дифференцируемая функция f(x) имела в точке х0 локальный экстремум, необходимо, чтобы в этой точке выполнялось равенство f¢(x0)=0.

Доказательство.

Поскольку х0 – точка экстремума, то существует такой интервал (х0-e, х0+e), на котором f(x0) – наибольшее или наименьшее значение. Тогда по теореме Ферма f¢(x0)=0.

Точки, в которых производная функция обращается в нуль, называются стационарными.

Достаточное условие существование экстремума. Если при переходе через точку х0 производная дифференцируемой функции f(x) меняет свой знак с плюса на минус, то точка х0 – точка локального максимума функции f(x), а если с минуса на плюс, то х0 – точка локального минимума.

Доказательство. (для максимума, для минимума – аналогично, то бишь самостоятельно)

Пусть f(x) – непрерывная дифференцируемая функция. f¢(x) меняет знак с «+» на «-». Пусть для любого хÎ (х0 -D, х0] f¢(x)>0 Þ по достаточному условию монотонности производная возрастает на данном интервале Þ f(x0)³f(x) "CÎ(x0-D, x0]

Пусть для "CÎ[х00+D) f¢(x)<0, следовательно, функция убывает на хÎ[х00+D) Þf(x0)³f(x) для любого хÎ[х00+D).

Вывод: для любого х Î (х0-D, х0+D) х0 – точка максимума для функции у=f(x). Ч.т.д.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 310 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.