Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Производная основных элементарных функций




Производная логарифмической функции. y=logax

Dy = loga(x+Dx)-logax = loga(1+Dx/x) = 1 loga(1+Dx/x) = 1loga(1+t) = 1 loga(1+t)1/t

Dx Dx Dx x Dx/x x t x

где t=Dx/x Используя непрерывность функции logax в точке х=е и первый замечательный предел, найдём производную логарифмической функции: (logах)¢= 1( logа(lim(1+t)1/t) = 1 logae= 1.

x t®0 x x lna

Производная показательной функции.

У=ах является обратной для функции х=logау. По теореме

у¢х= 1 = 1 =ylna

y 1/ylna

Поскольку у=ах, получаем (ах)¢=ахlna.

Производная степенной функции.

Функция у=ха при х>0 может быть представлена в виде хаalnx. Найдём (ха)¢=(еalnx)¢= еalnx(alnx)¢=ха*а/х=аха-1 Аналогично доказывается для x<0.

Производные тригонометрических функций.

С помощью формулы sinа-sinb=2sin[(a-b)/2]*cos[(a+b)/2], первого замечательного предела и непрерывности функции cos x найдём

(sinх)¢=lim sin (х+Dх) – sinх = lim 2sin(Dх/2) cos(х+Dх/2) =

Dx®0 Dx Dx®0 Dx

=lim sin(Dх/2) cos(х+Dх/2) = cos x

Dx®0 Dx/2

Для нахождения производных функций cos x и tg x можно использовать тождество cos x=sin(x-p/2), правило дифференцирования сложной функции.

Итак, (sin х)¢=cos x, (cos x)¢= - sin x, (tg x)¢=1/cos2 x.

Производные обратных тригонометрических функций.

Функция у=arcsinx является обратной для функции х=sinу. Следовательно, (arcsinx)¢x= 1 = 1 = 1 = 1

(siny)¢y cosy Ö1-sin2xØ Ö1-x2Ø

Аналогично находятся остальные обратные тригонометрические функции. (arcsinx)¢=1/Ö1-x2Ø, (arccosx)¢= - 1/Ö1-x2Ø, (arctgx)¢=-1/(x2+1).


12. Правило Лопиталя

Теорема (правило Лопиталя). Пусть А – число, символ одностороннего предела (А=а±0) или символ бесконечности (А=±∞). Пусть функции ƒ(х) и g(х) либо обе бесконечно малые, либо обе бесконечно большие при х→А. Тогда, если существует предел

(конечный или бесконечный),

 

то существует и предел при этом выполняется равенство:

Доказательство:

Доказательство теоремы дадим в случае, когда ƒ(х) и g(х) – бесконечно малые функции и А=а – число. Изменим, если это необходимо, определение функций ƒ(х) и g(х) в точке а так, чтобы значения этих функций в точке а были бы равны нулю: ƒ(х) = g(х)=0. Так как

 

и

 


то ƒ(х) и g(х) непрерывны в точке а,и к этим функциям можно применить теорему Коши. Учитывая, что ƒ(а) = ƒ(b)=0, получим

 

 

для некоторой точки с, расположенной между точками а и х. При х→а имеем с→а и, следовательно если ƒ(х)→0 и g(х)→0 (соответственно, |ƒ(х)|→+∞, |g(х)|→+∞), когда а→А. Правило Лопиталя позволяет во многих случаях найти предел вида

или, иными словами, раскрыть неопределенность.

В ряде случаев по правилу Лопиталя удается раскрыть неопределенности вида

Для этого следует воспользоваться тождеством

 

которое приводит указанные неопределенности к виду 0•х.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 349 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.