Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 5 страница




Решение:

Обозначим через A событие – извлечена деталь отличного качества. Возможно три варианта гипотезы: – извлечена деталь отличного качества, изготовленная заводе №1; – извлечена деталь отличного качества, изготовленная заводе №2; – извлечена деталь отличного качества, изготовленная заводе №3. По условию . Найдём вероятности того, что извлечённая деталь изготовлена на заводе №1, №2, №3.

где - общее число изготовленных на 3-х заводах деталей, – количество деталей изготовленных, соответственно, на заводах №1, 2, 3.

Искомая вероятность вероятность того, что извлеченная наудачу деталь окажется отличного качества находится по формуле полной вероятности:

№94 В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.

Решение:

Обозначим через событие – извлечён белый шар. Возможны следующие гипотезы:

- белый шар взят из первой урны, - белый шар взят из второй урны.

Поскольку всего имеется две гипотезы, причём по условию они равновероятны, и сумма вероятностей гипотез равна единице(т.к. они образуют полную группу событий), то вероятность каждой из гипотез равна , т.е. .

Условная вероятность того, что белый шар будет извлечён из первой урны равна: =

Условная вероятность того, что белый шар будет извлечён из второй урны равна: =

По формуле полной вероятности находим:

№ 95 В каждой из трех урн содержится 6 черных 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.

Решение.

A1 – вероятность того, что из первой урны извлечен белый шар.

A2 – вероятность того, что из первой урны извлечен черный шар.

P(A1)=4/10 P(A2)=6/10

B1 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну белый шар.

B2 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну черный шар.

P(B1)=5/11 P(B2)=4/11

C1 – вероятность того, что из второй корзины будет извлечен белый шар.

C2 – вероятность того, что из второй корзины будет извлечен черный шар.

P(C1)=P(A1)*P(B1)+P(A2)*P(B2) P(C1)=4/10*5/11+6/10*4/11=2/5

P(C2)=1-P(C1) P(C2)=1-2/5=3/5

D1 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну белый шар.

D2 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну черный шар.

P(D1)=5/11 P(D2)=4/11

E – вероятность того, что из третьей урны будет извлечен белый шар.

P(E)= P(D1)*P(C1)+P(D2)*P(C2) P(E)=5/11*2/5+4/11*3/5=2/5

Ответ: 2/5.

№ 96 Вероятности того, что во время работы цифровой электронной машины произойдет сбой в арифметическом устройстве, в оперативной памяти, в остальных устройствах, относятся как 3:2:5. Вероятности обнаружения сбоя в арифметическом устройстве, в оперативной памяти и в остальных устройствах соответственно равны 0,8; 0,9; 0,9. Найти вероятность того, что возникший в машине сбой будет обнаружен.

Решение:

Пусть А – событие того, что сбой будет обнаружен, тогда из формулы полной вероятности следует, что:

P(A)= PB1PB1A+PB2PB2A+PB3PB3A= 0,3*0,8+0,2*0,9+0,5*0,9=0,87.

Ответ: 0,87.

 

№ 97 Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.

Решение:

Обозначим через А событие – деталь отличного качества

Можно сделать два предположения

-деталь произведена первым автоматом (так как производительность первого автомата вдвое больше второго автомата, то Р()=2/3)

-деталь произведена вторым автоматом (Р()=1/3)

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,6

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,84

Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна

P(A)=Р()* (A)+ Р()* (A)=2/3*0.6+1/3*0.84=0.68

Вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

()= = =

Ответ:

 

№ 98 В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Что вероятнее: стрелок стрелял из винтовки с оптическим прицелом или без него?

Решение

Обозначим событие А – стрелок поразил мишень и гипотезы: B1 – стрелок выбрал винтовку с оптическим прицелом, B2 – без оптического прицела. Тогда . Условные вероятности попадания из винтовки с оптическим прицелом и без: . Вычислим вероятность попадания из наудачу взятой винтовки:

Теперь, воспользовавшись формулой Бейеса, получим ответ:

Ответ: Стрелок вероятнее всего стрелял из винтовки без оптического прицела.

 

№ 99 Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе как 3:2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.

Решение:

Обозначим через А событие—подъезд автомобиля к заправке. Можно сделать два предположения: —проехал грузовой автомобиль, причем =3/5; — проехал легковой автомобиль, причем = 2/5.

Условная вероятность, что проезжающий грузовой автомобиль подъедет на заправку: = 0,1. Для легкового: = 0,2.

Вероятность того, что проезжающий автомобиль подъедет на заправку, по формуле полной вероятности равна Р(А) = + = 3/5 0,1 + 2/5 0,2 = 0,14

Искомая вероятность того, что подъехавший к заправке автомобиль будет грузовым, по формуле Бейеса равна = = = 3/7

Ответ: 3/7.

 

№ 100 Две перфораторщицы набили на разных перфораторах по одинаковому комплекту перфокарт. Вероятность того, что первая перфораторщица допустит ошибку, равна 0,05; для второй перфораторщицы эта вероятность равна 0,1. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась первая перфораторщица. (Предполагается, что оба перфоратора были исправны.)

Решение.

Обозначим через событие А – ошибку перфораторщицы. Тогда, – ошибка сделана первой перфораторщицей, - ошибка сделана второй перфораторщицей. Причем P()=0,5 и P()=0,5, т.к. обе работали одинаково.

Условная вероятность того, что первая перфораторщица допустит ошибку, равна (A)=0,05;

Условная вероятность того, что вторая перфораторщица допустит ошибку, равна (A)=0,1.

Вероятность того, что наудачу взятая перфокарта, окажется с ошибкой равна, по формуле полной вероятности равна:

P(A)= P()* (A)+ P()* (A)=0,5*0,05+0,5*0,1= .

Искомая вероятность того, что взятая перфокарта произведена первой перфораторщицей, по формуле Бейеса равна:

= = =

 

№ 101 В специализированную больницу поступают в среднем 50% больных с заболеванием К, 30%—с заболеванием L, 20%—с заболеванием М. Вероятность

полного излечения болезни К равна 0,7; для болезней L и М эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан

здоровым. Найти вероятность того, что этот больной страдал заболеванием К.

 

Решение

Больные поступают в больницу в разном процентном соотношении. Р(k)= 0.7, P(L)=0.3,P(M)= 0.2, где K,L,M – заболевания, а Р(Х)- вероятность поступления с данным заболеванием.Тогда Pk(A)=0.7, Pl(A)=0.8,Pm(A)=0.9 это вероятность полного излечения от данного заболевания. Чтобы найти вероятность что Больной, поступивший в больницу, был выписан здоровым надо найти:

P(A)= Pk(a)*P(k) + Pl(a)*P(l) + Pm(a)*P(m) = 0.7*0.5 + 0.8*0.3 + 0.9*0.2 = 0.77

А вероятность что больной страдал именно заболеванием К равно:

Pa(K) = (Pk(a)*P(k))/P(A)= (0.5*0.7)/0.77 = 5/11

 

№102 Изделие проверяется на стандартность одним из двух товароведов. Вероятность того, что изделие попадет к первому товароведу, равна 0,55, а ко второму – 0,45. Вероятность того, что стандартное изделие будет признано стандартным первым товароведом, равно 0,9, а вторым – 0,98. Стандартное изделие при проверке было признано стандартным. Найти вероятность того, что это изделие проверил второй товаровед.

Решение:

Обозначим через А – изделие признана стандартной. - вероятность того, что изделие попало к первому товароведу. - ко второму. P() = 0,55, P() = 0,45.

Условная вероятность того что изделие будет признано стандартным первым товароведом равна (A) = 0,9, вторым - (A) = 0,98.

Вероятность того, что изделие будет признано стандартным по формуле полной вероятности равна

P(A)= P() (A) + P() (A) = 0,55 * 0,9 + 0,45 * 0,98 = 0,936

Искомая вероятность того, что изделие проверил второй товаровед, по формуле Бейеса равна

()= P() * (A) / P(A)= 0,45*0,98 / 0,936 = 0,47.

 

№ 103 Событие А может появится при условии появления одного из несовместимых событий В1, В2,…, Вn, образующих полную группу событий. После появления события А были переоценены вероятности гипотез, то есть были найдены условные вероятности РА(Вi) (i=1,2,…,n). Доказать, что сумма РА(Вi) (i=1,2,…,n) равна 1.

Решение:

По формуле Бейеса:

i=1n∑РА(Вi)= i=1n∑Р(Вi)* РВi(А)/Р(А)=Р(А)/Р(А)=1

Что и требовалось доказать.

№ 104 Событие может появиться при условии появления одного из несовместных событий (гипотез) , образующих полную группу событий. После появления события были переоценены вероятности этих гипотез, т.е. были найдены условные вероятности этих гипотез, причем оказалось, что . Чему равна условная вероятность гипотезы ?

Решение:

Так как события образуют полную группу, и появится при условии появления лишь одного из них, то верно . Так как имеем , то:

 

№ 105 Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 20, 15, 10. Из наудачу выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Деталь возвращают в партию и вторично из той же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.

Решение:

Обозначим через А событие – в каждом из двух испытаний была извлечена стандартная деталь. Можно предположить, что B1 – детали извлекались из первой партии; B2 – детали извлекались из второй партии; В3 – детали извлекались из третей партии.

Детали извлекались на удачу, поэтому вероятности предположений одинаковы:

P(B1) = P(B2) = P(B3) =

Вероятность того, что из первой партии будут последовательно извлечены две стандартные детали; поэтому

Условная вероятность т.е вероятность того, что из второй партии будут извлечены две стандартные детали:

Найдем условную вероятность т.е вероятность того, что из третей партии будут последовательно извлечены две стандартные детали:

Искомая вероятность того, что обе извлеченные детали стандартные взяты из третей партии, по формуле Бейеса равна

Ответ:

№ 106 Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания в цель первым, вторым и третьим орудиями соответственно равны , , .

Решение:

Обозначим через A событие- два орудия попали в цель. Сделаем два предположения: - орудие не попало в цель.

По условию , следовательно

Найдем условную вероятность , т.е. вероятность того, что в цель попало 2 снаряда, причем один из них послан первым орудием и, следовательно, второй - либо вторым орудием, либо третьим. Эти два события несовместны, поэтому применима теорема сложения:

.

Найдем условную вероятность , т.е. вероятность того, что в цель попало два снаряда, причем первое орудие дало промах. Другими словами найдем вероятность того, что второе и третье орудие попали в цель. Эти два события независимы, поэтому применима теорема умножения:

Искомая вероятность того, что первое орудие дало попадание, по формуле Бейеса равна:

.

Ответ:

№ 108 Три стрелка произвели залп, причем две пули поразили мишень. Найти вероятность того, что третий стрелок поразил мишень, если вероятности попадания в мишень первым, вторым и третьим стрелками соответственно равны 0,6, 0,5 и 0,4.

Решение.

Обозначим через А событие – две пули поразили мишень. Сделаем два предположения (гипотезы): В1 – третий стрелок поразил мишень; В2 – третий стрелок не попал в мишень.

 

По условию, Р(В1) = 0,4; следовательно (событие В2 противоположно событию В1),

 

Р(В2) = 1 – 0,4 = 0,6.

Найдем условную вероятность РВ1(А), т.е. вероятность того, что мишень поразили две пули, причем одна из них принадлежит третьему стрелку и, следовательно, вторая – либо первому стрелку (при этом второй не попал), либо второму стрелку (при этом первый не попал). Эти два события несовместны, поэтому применима теорема сложения:

 

РВ1(А) = p1∙q2 + p2∙q1 = 0,6∙0,5 + 0,5∙0,4 = 0,5.

 

Найдем условную вероятность РВ2(А), т.е. вероятность того, что мишень поразили две пули, причем третий стрелок промахнулся. Другими словами, найдем вероятность того, что первый и второй стрелки поразили мишень. Эти два события независимы, поэтому применима теорема умножения:

 

РВ2(А) = p1∙p2 = 0,6∙0,5 = 0,3.

 

Искомая вероятность того, что третий стрелок поразил мишень, по формуле Бейеса равна

 

РА(В1) = Р(В1)∙РВ1(А)/[ Р(В1)∙РВ1(А) + Р(В2)∙РВ2(А)] = 0,4∙0,5/(0,4∙0,5 + 0,6∙0,3) = 10/19.

 

Ответ: 10/19.

 

№ 108 Два из трех независимо работающих элементов вычислительного устройства отказали. Найти вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0,2; 0,4 и 0,3.

Решение.

Обозначим через А событие – отказали два элемента. Можно сделать следующие предположения (гипотезы):

В1 - отказали первый и второй элементы, а третий элемент исправен, причем (поскольку элементы работают независимо, применима теорема умножения)

 

Р(В1) = p1∙p2∙q3 = 0,2∙0,4∙0,7 = 0,056;

 

В2 - отказали первый и третий элементы, а второй элемент исправен, причем

Р(В2) = p1∙p3∙q2 = 0,2∙0,3∙0,6 = 0,036;

В3 - отказали второй и третий элементы, а первый - исправен, причем

Р(В3) = p2∙p3∙q1 = 0,4∙0,3∙0,8 = 0,096;

В4 - отказал только один элемент; В5 - отказали все три элемента; В6 - ни один из элементов не отказал.

Вероятности последних трех гипотез не вычислены, так как при этих гипотезах событие А (отказали два элемента) невозможно и значит условные вероятности РВ4(А), РВ5(А) и РВ6(А) равны нулю, следовательно, равны нулю и произведения Р(В4)∙РВ4(А), Р(В5)∙РВ5(А) и Р(В6)∙РВ6(А) при любых значениях вероятностей гипотез В4, В5 и В6.

Поскольку при гипотезах В1, В2 и В3 событие А достоверно, то соответствующие условные вероятности равны единице:

РВ1(А) = РВ2(А) = РВ3(А) = 1.

По формуле полной вероятности, вероятность того, что отказали два элемента, равна

Р(А) = Р(В1)∙РВ1(А) + Р(В2)∙РВ2(А) + Р(В3)∙РВ3(А) + Р(В4)∙РВ4(А) + Р(В5)∙РВ5(А) + Р(В6)∙РВ6(А) = 0,056 + 0,036 + 0,096 = 0,188.

По формуле Бейеса, искомая вероятность того, что отказали первый и второй элементы,

РА(В1) = Р(В1)∙РВ1(А)/ Р(А) = 0,056/0,188 = 0,3.

 

Ответ: 0,3.

 

 

Кравченко Антонина.

№109. Две из четырех независимо работающих ламп прибора отказали. Найти вероятность того, что отказали первая и вторая лампы, если вероятности отказа первой, второй, третьей и четвертой ламп соответственно равны 0,1, 0,2, 0,3 и 0,4.

Решение:

Обозначим через А событие – отказали две лампы. Можно сделать следующие предположения (гипотезы):

В1 - отказали первая и вторая лампы, а третья и четвертая лампы исправны, причем (поскольку лампы работают независимо, применима теорема умножения)

Р(В1) = p1∙p2∙q3∙q4 = 0,1∙0,2∙0,7∙0,6 = 0,0084;

В2 - отказали первая и третья лампы, а вторая и четвертая исправны, причем

Р(В2) = p1∙q2∙p3 ∙q4 = 0,1∙0,8∙0,3∙0,6 = 0,0144;

В3 - отказали первая и четвертая лампы, а вторая и третья - исправны, причем

Р(В3) = p1∙q2∙q3∙p4 = 0,1∙0,8∙0,7∙0,4 = 0,0224;

В4 - отказали вторая и третья лампы, а первая и четвертая - исправны, причем

Р(В4) = q1∙p2∙p3∙q4 = 0,9∙0,2∙0,3∙0,6 = 0,0324;

В5 - отказали вторая и четвертая лампы, а первая и третья - исправны, причем

Р(В5) = q1∙p2∙q3∙p4 = 0,9∙0,2∙0,7∙0,4 = 0,0504;

В6 - отказали третья и четвертая лампы, а первая и вторая - исправны, причем

Р(В6) = q1∙q2∙p3∙p4 = 0,9∙0,8∙0,3∙0,4 = 0,0864;$

В7 – отказала только одна лампа; В8 - отказали три лампы; В9 - отказали все четыре лампы и В10 – все лампы остались исправны.

Вероятности последних четырех гипотез не вычислены, так как при этих гипотезах событие А (отказали две лампы) невозможно и значит условные вероятности РВ7(А), РВ8(А), РВ9(А) и РВ10(А) равны нулю, следовательно, равны нулю и произведения Р(В7)∙РВ7(А), Р(В8)∙РВ8(А), Р(В9)∙РВ9(А) и Р(В10)∙РВ10(А) при любых значениях вероятностей гипотез В7, В8, В9 и В10.

Поскольку при гипотезах В1 – В6 событие А достоверно, то соответствующие условные вероятности равны единице:

РВ1(А) = РВ2(А) = РВ3(А) = РВ4(А) = РВ5(А) = РВ6(А) = 1.

По формуле полной вероятности, вероятность того, что отказали две лампы, равна

Р(А) = Р(В1)∙РВ1(А) + Р(В2)∙РВ2(А) + Р(В3)∙РВ3(А) + Р(В4)∙РВ4(А) + Р(В5)∙РВ5(А) + Р(В6)∙РВ6(А) + Р(В7)∙РВ7(А) + Р(В8)∙РВ8(А) + Р(В9)∙РВ9(А) + Р(В10)∙РВ10(А) = 0,0084 + 0,0144 + 0,0224 + 0,0324 + 0,0504 + 0,0864 = 0,2144.

По формуле Бейеса, искомая вероятность того, что отказали первая и вторая лампы, равна





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 1822 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.