Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Бросают игральных костей. Найти метематическое ожидание числа таких бросаний, в каждом из которых выпадет ровно шестерок, если общее число бросаний равно . 1 страница




Абредж Мурат.

№1. Брошены две игральные кости. Найти вероятность того, чтосумма очков на выпавших гранях – четная, причем на гранях хотя бы одной из костей появится шестерка.

Решение:

На выпавшей грани «первой» игральной кости может появиться одно очко, два очка,…, шесть очков. Аналогичные шесть элементарных исходов возможны и при бросании другой кости. Каждый из исходов бросания «первой» может сочетаться с каждым из исходов бросания «второй». Таким образом общее число возможных элементарных исходов испытания равно . Эти исходы образуют полную группу и в силу симметрии костей равновозможны.

Благоприятствующими интересующему нас событию (хотябы на одной грани появится шестерка, сумма выпавших очков четная) являются следующие пять исходов

1)6, 2 2)6, 4 3)6, 6 4)2, 6 5)4, 6

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех возможных элементарных исходов испытания:

№2 При перевозке ящика, в котором содержались 21 стандартная

и 10 нестандартных деталей, утеряна одна деталь, причем неизвестно

какая. Наудачу извлеченная (после перевозки) из ящика деталь

оказалась стандартной. Найти вероятиссть того, что была утеряна:

а) стандартная деталь; б) нестандартная деталь.

Решение:

а) Извлеченная стандартная деталь, очевидно, не

могла быть утеряна; могла быть потеряна любая из остальных 30 деталей (21+10—1=30), причем среди них было 20 стандартных (21-1=20). Вероятность того, что была потеряна стандартная деталь, Р= 20/30 = 2/3.

б) Среди 30 деталей, каждая из которых могла быть утеряна, было 10 нестандартных. Вероятность того, что потеряна нестандартная деталь,

Р=10/30=1/3.

Ответ:1/3

№3 Задумано двузначное число. Найти вероятность того, что задуманным числом окажется: а) случайно названное двузначное число; б) случайно названное двузначное число, цифры которого различны.

Решение

а) Мы рассматриваем событие:

А – задуманным двузначным числом оказалось случайно названное двузначное число.

Для этого события общее число возможных элементарных исходов n = 90, т.е. количество всех двузначных чисел. А число возможных исходов, благоприятствующих событию m = 1, т.е. только одно двузначное число будет равно задуманному.

Итак, по классическому определению вероятности получаем:

P(A) = m/n = 1/90

б) Мы рассматриваем событие:

А – задуманным двузначным числом оказалось случайно названное двузначное число, цифры которого различны.

Для этого события общее число возможных элементарных исходов n = 81, т.е. количество всех двузначных чисел, цифры которого различны. А число возможных исходов, благоприятствующих событию m = 1, т.е. только одно двузначное число будет равно задуманному.

Итак, по классическому определению вероятности получаем:

P(A) = m/n = 1/81

Ответ: а)1/90; б)1/81

 

 

№4 Указать ошибку «решения» задачи: брошены две игральные кости, найти вероятность того, что сумма очков на костях будет равна 3 (событие ).

Решение.

Возможны два исхода события: сумма выпавших очков равна 3, сумма выпавших очков не равна 3. Событию благоприятствует один исход; общее число исходов равно двум. Следовательно, искомая вероятность

.

Ошибка этого решения состоит в том, что рассматриваемые исходы не являются равновозможными.

Правильное решение:

Общее число равновозможных исходов испытания равно (каждое число очков, выпавших на одной кости, может сочетаться со всеми числами очков, выпавших на другой). Среди этих исходов событию может благоприятствовать только два исхода: Следовательно, искомая вероятность .

№5 Брошены две игральные кости. Найти вероятности следующих событий: а) сумма выпавших очков равна семи; б) Сумма выпавших очков равна восьми, а разность – четырём; в) Сумма выпавших очков равна восьми, если известно что их разность равна четырём; г) сумма выпавших очков равна пяти, а произведение - четырём.

Решение:

Общее число равно равновозможных исходов равно 6*6=36 (Каждое число на одной кости может сочетаться со всеми числами очков, выпавших на другой кости)

А) среди общего количества исходов событию А благоприятствуют только 6: (1.6), (6,1),(2,5),(5,2),(3,4),(4,3) следовательно искомая вероятность 6/36=1/6

Б) среди общего количества исходов событию А благоприятствуют только 6: (2.6), (6,2),(3,5),(5,3),(4,4),(4,4), но в следствии того что разность равна 4 останется только два события: (2,6) и (6,2). Следовательно искомая вероятность 2/36=1/18

В) Общее число исходов события А равно 4: (6,2) (2,6) (5,1) (1,5) (т.к. разность должна быть равна 4). Среди общего количества исходов события А благоприятствуют только 2: (6,2) и (2,6). Следовательно искомая вероятность равна 2/4 = ½

Г) среди общего количества исходов событию А благоприятствуют только 4: (1,4), (4,1),(3,2),(2,3), но в следствии того что произведение равно 4 останется только два события: (1,4) и (4,1). Следовательно искомая вероятность 2/36=1/18

 

№6

Общее число равновозможных исходов равно 1000 (всего столько кубиков). Среди этих исходов благоприятствуют событию только 384 исхода (64 маленьких кубика имеют одну окрашенную грань на грани большого, граней у куба 6, поэтому ) следовательно искомая вероятность . Благоприятствует событию только исходов, т.е. . А событию – 8 исходов (только на углах большого куба у маленьких кубиков окрашены 3 грани), т.е. .

№7 Монета брошена 2 раза. Найти вероятность того, что хотя бы один раз появится «герб».

Решение: Всего различных случаев выпадения монеты – 4. Обозначим как 1- выпала «решка», 0 – выпал «герб». Тогда можем составить таблицу:

1я попытка 2 попытка
   
   
   
   

 

Т.е. всего удовлетворяющих нас выпадений – 3 из 4. Следовательно, вероятность того, что выпадет хоть один «герб» равна PA= mn= 34;

№8

Число всевозможных исходов эксперимента – 720

(Так как нам важно, в каком порядке извлекаются кубики, то для подсчёта всех возможных исходов необходимо найти все их перестановки, то есть n= =6!=720)

Число исходов, удовлетворяющих поставленному условию – 1

(то есть m=1)

Значит шанс, что все кубики извлекутся в нужном порядке - 1/720

(P(a)=m/n=1/720)

Ответ: 1/720

№9. Найти вероятность того, что при бросании трех игральных костей шестерка выпадет на одной (безразлично какой) кости, если на гранях двух других костей выпадут числа очков, не совпадающие между собой (и не равные 6).

Решение:

Общее число элементарных исходов испытания равно числу сочетаний из 6 элементов по 3 с повторениями ().

Число исходов, благоприятствующих появлению шестерки на одной грани и различного числа очков (не равных 6) на гранях двух других костей, равно числу сочетаний без повторений из 5 элементов по 2 ().

Искомая вероятность равна отношению числа исходов, благоприятствующих интересующему нас событию, к общему числу возможных элементарных исходов:

Ответ: 10/56.

№10 В пачке 20 перфокарт, помеченных номерами 101, 102,..., 120 и произвольно расположенных. Перфораторщица наудачу извлекает две карты. Найти вероятность того, что извлечены перфокарты с номерами 101 и 120.

Решение:

Общее число элементарных исходов испытания равно числу сочетаний из 20 элементов по 2 с повторениями ().

Число исходов, благоприятствующих появлению перфокарт с номерами 101 и 120, равно числу сочетаний без повторений из 2 элементов по 2 () = 1.

Искомая вероятность равна отношению числа исходов, благоприятствующих интересующему нас событию, к общему числу возможных элементарных исходов:

Ответ: 1/190.

 

№11 В ящике 10 одинаковых деталей, помеченных 1,2,…,10. Наудачу извлечены 6 деталей. Найти вероятность того, что среди извлеченных деталей окажутся:

А) деталь № 1;

Б) деталь № 1 и № 2.

Решение.

А) Общее число возможных элементарных исходов равно числу способов, которыми можно извлечь 6 деталей из 10, т.е. .

Найдем число исходов, благоприятствующих интересующему нас событию: среди отобранных 6 деталей есть деталь № 1 и, следовательно, остальные пять деталей имеют другие номера. Число таких исходов, очевидно, равно числу способов, которыми можно отобрать 5 деталей из оставшихся 9, т.е. .

Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов: P= =0,6.

 

 

Б) Число исходов, благоприятствующих интересующему нас событию (среди отобранных деталей есть детали № 1 и № 2, следовательно, четыре детали имеют другие номера), равно числу способов, которыми можно извлечь четыре детали из оставшихся восьми, т.е. C48.

Искомая вероятность P= =1/3.

 

№12 В ящике имеется 15 деталей, среди которых 10 окрашенных. Сборщик наудачу извлекает три детали. Найти вероятность того, что извлеченные детали окажутся окрашенными.

Решение:

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 3 детали из 15. Число исходов, благоприятствующих равно числу возможных вариантов извлечения 3 деталей из 10.

Искомая вероятность равна отношению С из 15 по 3 деленное на С из 10 по 3.

 

№13 В конверте среди 100 фотокарточек находится одна разыскиваемая. Из конверта наудачу извлечены 10 карточек. Найти вероятность того, что среди них окажется нужная.

Решение:

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 10 карточек из 100. = .

Число исходов, благоприятствующих равно числу возможных вариантов извлечения 9 карточек. 10ая карточка – это карточка интересующая нас. Это число равно .

Искомая вероятность равна отношению P= / = 0,1.

 

 

№14 В ящике 100 деталей, из них 10 бракованных. Наудачу извлечены 4 детали. Найти вероятность того, что среди извлеченных деталей: а) нет бракованных; б) нет годных.

Решение.

а) Общее число возможных элементарных исходов испытания равно количеству способов извлечь 4 детали из100, т.е. , число благоприятствующих рассматриваемому событию исходов равно количеству способов извлечь 4 не бракованные детали, т.е. . Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов:

.

б) Число благоприятствующих рассматриваемому событию исходов равно количеству способов извлечь 4 бракованные детали, т.е. .

.

 

№15 Устройство состоит из пяти элементов, из которых два изношены. При включении устройства включаются случайным образом два элемента. Найти вероятность того, что включенными окажутся два неизношенных элемента

Решение:

Общее число возможных элементарных исходов испытания равно числу вариантов включения двух элементов из пяти, что составляет

Найдем число исходов, благоприятствующих интересующему нас событию: оба включенных элемента неизношенны, следовательно, все оставшиеся изношены. Чисто таких исходов равно числу способов, которыми можно извлечь два неизношенных элемента из трех:

Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов:

 

-=-=-=-=-=-задача 16-=-=-=-=-=-

№17 В партии из N деталей имеется п стандартных. Наудачу отобраны m деталей. Найти вероятность того, что среди отобранных деталей ровно k стандартных.

Решение:

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь m деталей

из N деталей, т. е. —числу сочетаний из N элементов по m.

Подсчитаем число исходов, благоприятствующих интересующему

нас событию (среди m деталей ровно k стандартных): k стандартных деталей можно взять из п стандартных, деталей способами;

число благоприятствующих исходов равно

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

№18 В цехе работают шесть мужчин и четыре женщины. По табельным номерам наудачу отобраны семь человек. Найти вероятность того, что среди отобранных окажутся три женщины.

Решение

Общее число равновозможных элементарных исходов испытания равно числу способов отбирания по табельным номерам человек из , т.е числу сочетаний .

Найдем число исходов, благоприятствующих интересующему нас событию: трех из четырех можно отобрать способами. Остальные четыре человека будут мужчинами. Выбор четырех из шести мужчин можно осуществить способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех равновозможных элементарных исходов, т.е:

Березова Виктория

№19 На складе имеется 15 кинескопов, причем 10 из них изготовлены Львовским заводом. Найти вероятность того, что среди пяти взятых наудачу кинескопов окажутся три кинескопа Львовского завода.

Решение

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 5 кинескопов из 15 кинескопов, т.е. – числу сочетаний из 15 элементов по 5.

Подсчитаем число исходов, благоприятствующих интересующему нас событию (среди 5 кинескопов ровно 3 Львовского завода): 3 кинескопа Львовского завода можно взять из 10 кинескопов, изготовленных Львовским заводом способами; при этом остальные

(5-3) кинескопа должны быть изготовлены не Львовским заводом; взять же их из (15-10) кинескопов не Львовского завода можно способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

P= * / ≈0,4

 

Ответ: вероятность равна 0,4.

 

№20 В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что среди отобранных студентов пять отличников.

Решение

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно выбрать 9 студентов из 12 студентов, т.е. – числу сочетаний из 12 элементов по 9.

Подсчитаем число исходов, благоприятствующих интересующему нас событию (среди 9 студентов ровно 5 отличников): 5 отличников можно взять из 8 способами; при этом остальные (9-5) студента не должны быть отличниками; взять же их из (12-8) студентов, не являющихся отличниками можно способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

P= * /

Ответ: вероятность равна .

 

№21 В коробке 5 одинаковых изделий, причем 3 из них окрашены. Наудачу извлечены 2 изделия. Найти вероятность того, что среди двух извлеченных изделий окажутся: а) одно окрашенное изделие; б) два окрашенных изделия; в) хотя бы одно окрашенное изделие.

Решение

а)Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь две изделий из пяти, и равно -числу сочетаний из пяти элементов по два.

Одно окрашенное изделие можно взять из трех окрашенных изделий способами.

А число способов взять одно неокрашенное изделие из двух неокрашенных равно .

Число благоприятствующих условий равно .

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Р= / =0,6

б) Р= / =0,3

в) Р= / + / =0,9

 

Ответ: вероятность равна а)0,6; б)0,3; в)0,9.

 

№22 В «секретном» замке на общей оси 4 диска, каждый из которых разделен на 5 секторов, на которых написаны различные цифры. Замок открывается только в том случае, если диски установлены так, что цифры на них составляют определенное четырехзначное число. Найти вероятность того, что при произвольной установке дисков замок будет открыт.

Решение

Число всех возможных исходов равно 625. Так как для открытия замка необходима определенная комбинация цифр, то значит благоприятствующим будет только 1 исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех возможных элементарных исходов: P=1/625.

Ответ:1/625.

№23 Отдел технического контроля обнаружил пять бракованных книг в партии из случайно отобранных 100 книг. Найти относительную частоту появления бракованных книг.

Решение

Относительная частота события A (появление бракованных книг) равна отношению числа испытаний, в которых появилось событие A, к общему числу произведенных испытаний:

W(A) = = 0,05

Ответ: относительная частота равна 0,05.

 

№ 24 По цели произведено 20 выстрелов, причем зарегистрировано 18 попаданий. Найти относительную частоту попаданий в цель.

Решение

Относительная частота события А (попадание в цель) равна отношению числа попаданий к числу произведенных выстрелов:

Ответ: относительная частота равна 0,9.

 

№25 При испытании партии приборов относительная частота годных приборов оказалась равной 0,9. Найти число годных приборов, если всего было проверено 200 приборов.

Решение

Относительная частота события A (появление годных приборов) равна отношению числа испытаний, в которых появилось событие A, к общему числу произведенных испытаний:

W(A) =

Из этой формулы найдем m (количество годных приборов):

m= A*n=0,9*200=180

 

Ответ: количество годных приборов равно 180.

 

№26 На отрезке L длины 20 см помещён меньший отрезок l длины 10 см. Найти вероятность того, что точка, наудачу поставленная на больший отрезок, попадает так же и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка, и не зависит от его расположения.

Решение:

Т.к. вероятность

попадания точки на отрезок

пропорциональна длине отрезка,

и не зависит от его расположения,

то искомую вероятность можно

найти по формуле

Подставляя наши значения (L=20; l= 10) в данную формулу получаем искомую вероятность

 

№27 На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков ОВ и ВА имеет длину, большую чем L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка, и не зависит от его расположения на числовой оси.

Решение

Разобьём отрезок ОА на 3

отрезка длины L/3. Тогда

для того чтобы меньший из

отрезков ОВ и ВА имеет длину, большую чем L/3, необходимо чтобы наудачу поставленная точка B(x) попала в отрезок b, длина которого l=L/3. А т.к. вероятность попадания точки на отрезок пропорциональна длине отрезка, и не зависит от его расположения на числовой оси, то искомую вероятность можно найти по формуле

Подставляя наши значения (L=L; l=L/3) в данную формулу получаем искомую вероятность

 

№28 В круг радиуса R помещен меньший круг радиуса r. Найти вероятность того, что точка наудачу брошенная в большой круг попадет также и в малый круг. Предполагается, что вероятность попадания точки в круг пропорциональна площади круга, и не зависит от его расположения.

Решение

Т.к. вероятность попадания точки в круг пропорциональна площади круга, и не зависит от его расположения, то мы можем вычислить вероятность того, что точка наудачу брошенная в большой круг попадет также и в малый круг по формуле:

(*)

Где g- площадь малого круга, а G- площадь большого круга. Вычислим площади.

Подставив их в формулу (*) получим искомую вероятность

№29 Плоскость разграфлена параллельными прямыми, находящимися друг от друга на расстоянии 2 a. На плоскость наудачу брошена монета радиуса r<a. Найти вероятность того, что монета не пересечет ни одной из прямых.

 

Решение

Для того чтобы монета не пересекла параллельные прямые, необходимо, чтобы при броске расстояние от монеты до прямых было равно

l=(2a-2r)

А общее расстояние, между двумя прямыми -

L=2a

Т.к. нам не важно куда приземлится монета, а главное чтоб она не пересекла прямые, то мы можем воспользоваться формулой для нахождения вероятности того, что монета не пересечет ни одной из прямых.





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 2437 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2016 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.