Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод теории функционала плотности




При численном решении уравнения Шредингера систем с большим числом частиц возникают сложности, связанные с невозможностью вычисления волновой функции с достаточной точностью и записью волновой функции в цифровом виде в память компьютера. Данные проблемы не могут быть решены посредством увеличения точности расчета или расширения памяти, так как в их основе лежит экспоненциальный рост ошибок или памяти. Путь решения проблемы был найден в работах Вальтера Кона с сотрудниками, отмеченных Нобелевской премией по химии 1998г, за разработку метода теории функционала плотности.

Теория функционала плотности (англ. density functional theory, DFT) является одним из наиболее широко используемых и универсальных методов в вычислительной физике и вычислительной химии. В основе метода лежат теоремы Хоэнберга—Кона.

1. Первая теорема утверждает, что существует взаимно однозначное соответствие между плотностью основного состояния электронной подсистемы, находящейся во внешнем потенциале атомных ядер, и самим потенциалом ядер.

2. Вторая теорема представляет собой вариационный принцип квантовой механики, сформулированный для функционала плотности и утверждает, что энергия электронной подсистемы, записанная как функционал электронной плотности, имеет минимум, равный энергии основного состояния.

Основная цель метода теории функционала плотности- заменить многоэлектронную волновую функцию при описании электронной подсистемы электронной плотностью. Это ведет к существенному упрощению задачи, поскольку многоэлектронная волновая функция зависит от переменных - по 3 пространственных координаты на каждый из электронов, в то время как плотность — функция лишь трёх пространственных координат.

Полную энергию для системы взаимодействующих электронов можно записать в виде:

(2.5)

Где Т представляет собой кинетическую энергию, второе слагаемое обеспечивает электростатическое отталкивание электронов. Vext - потенциал взаимодействия электрона с ядрами, а Exс - обменная корреляционная энергия. Вариационное решение этой задачи позволяет получить систему одночастичных уравнений Шредингера вида:

 

(2.6)

Где t - представляет собой кинетическую энергию отдельного электрона и

(2.7)

Где Vxc( r ) - обменно-корреляционный потенциал, включающий все многочастичные взаимодействия.

Основная проблема, связанная с методом теории функционала плотности заключается в том, что точные аналитические выражения для функционалов обменной и корреляционной энергии известны только для частного случая газа свободных электронов. В физических приложениях наиболее распространено приближение локальной плотности, в котором принято, что функционал, вычисляемый для некоторой точки пространства, зависит только от плотности в этой точке:

(2.8)

εxc(ρ) в точке r зависит только от электронной плотности в данной точке ρ( r ). Обменная составляющая обменно-корреляционной энергии в приближении LDA определяется формулой Дирака

,

Приближение локальной спиновой плотности является непосредственным обобщением приближения локальной плотности, учитывающим спин электрона. Если плотности электронов с разной ориентацией спина α и β не равны, то обменная энергия в приближении LSDA вычисляется по формуле:

(2.9)

Метод обобщённого градиентного приближения (GGA) также является локальным, но, в отличие от метода локальной плотности, учитывает градиент плотности в точке рассмотрения:

(2.10)

Использование этого приближения дает хорошие результаты при расчете геометрии и энергии основного состояния молекул. Существуют и более точные приближения, которые в значительной степени позволяют решить проблему вычисления функционала обменно-корреляционной энергии.

В расчётах квантовой химии одним из распространённых является вид обменного функционала, называемый BLYP (Becke, Lee, Yang, Parr). Еще более широко распространено приближение B3LYP, которое основано на гибридном функционале, в котором обменная энергия рассчитывается с привлечением точного результата, полученного методом Хартри — Фока.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 1851 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2405 - | 2285 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.