Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Плоское движение твердых тел




Пусть к телу, как будто плавающему на поверхности воды, в некоторой точке приложена сила F 0 (рис. 10.2). Мысленно приложим к особой точке тела, называемой центром масс, две равные и противоположные силы F 1 и F 2, параллельные и равные силе F 0. Под действием силы F 2, тело совершает поступательное движение. А пара сил F 0 и F 1создает момент сил M 0 =F 0 d, под действием которого тело вращается.

Итак, плоское движение тела можно представить как сумму двух движений: поступательного со скоростью центра масс и вращения вокруг оси, проходящей через центр масс под действием результирующей пар сил.

Возможно другое представление плоского движения. Пусть скорость точки О – центра масс тела равна (рис. 10.2). Проведём в плоскости движения перпендикуляр АОС к вектору скорости V 0. Так как тело твёрдое, то огибающая линия концов векторов скоростей точек является прямой линией. Она и перпендикуляр пересекутся в некоторой точке С, скорость которой равна нулю. Через неё проходит так называемая мгновенная ось вращения, относительно которой тело совершает только вращательное движение с угловой скоростью . Положение мгновенной оси со временем меняется.

Примером плоского движения является качение колеса по рельсу. Если проскальзывания нет, то мгновенная ось вращения совпадает с линией касания колесной пары с рельсами, и перемещается со скоростью вагона.

Соответственно двум способам представления плоское движение может быть описано: либо уравнением основного закона динамики вращательного движения относительно мгновенной оси

, (10.3)

либо системой двух уравнений: второго закона Ньютона для поступательного движения тела как материальной точки, расположенной в центре масс, и основного закона динамики вращательного движения тела относительно оси, проходящей через центр масс

и (10.4)

В уравнениях J 0 и Jс – моменты инерции тела относительно выбранных осей вращения О или С. Соотношение между моментами инерции тела относительно осей О или С определяют по теореме Штейнера.

Теорема Штейнера

Момент инерции является мерой инертности тела при вращательном движении и по определению равен сумме произведений масс частиц тела mi на квадраты их расстояний r до оси вращения:

. (10.5)

Представим вектор от оси С– С до некоторой точки массы mi как сумму векторов (рис. 10.3). Подставив в определяющую формулу момента инерции (10.5) радиус - вектор r и возведя сумму в квадрат, получим

 

. (10.6)

 

Первый член этого уравнения J 0 – момент инерции тела относительно оси О – О, проходящей через центр масс. Во втором члене сумма определяет положение центра масс относительно оси О – О, и так как ось проходит через центр масс, то эта сумма равна нулю. Третий член – это произведение суммы масс частиц (то есть массы тела) на квадрат расстояния между осями. Итак, момент инерции равен

 

Jс = J 0 + m а 2. (10.7)

 

Это уравнение теоремы Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной данной оси, и произведению массы тела на квадрат расстояния между осями.

В тех случаях, когда момент инерции относительно оси, проходящей через центр масс J 0 , можно сравнительно легко рассчитать, теорема Штейнера позволяет определить момент инерции относительно произвольной оси Jс, избежав весьма трудоемких расчетов.





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 623 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2780 - | 2342 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.