Пусть к телу, как будто плавающему на поверхности воды, в некоторой точке приложена сила F 0 (рис. 10.2). Мысленно приложим к особой точке тела, называемой центром масс, две равные и противоположные силы F 1 и F 2, параллельные и равные силе F 0. Под действием силы F 2, тело совершает поступательное движение. А пара сил F 0 и F 1создает момент сил M 0 =F 0 d, под действием которого тело вращается.
Итак, плоское движение тела можно представить как сумму двух движений: поступательного со скоростью центра масс и вращения вокруг оси, проходящей через центр масс под действием результирующей пар сил.
Возможно другое представление плоского движения. Пусть скорость точки О – центра масс тела равна (рис. 10.2). Проведём в плоскости движения перпендикуляр АОС к вектору скорости V 0. Так как тело твёрдое, то огибающая линия концов векторов скоростей точек является прямой линией. Она и перпендикуляр пересекутся в некоторой точке С, скорость которой равна нулю. Через неё проходит так называемая мгновенная ось вращения, относительно которой тело совершает только вращательное движение с угловой скоростью . Положение мгновенной оси со временем меняется.
Примером плоского движения является качение колеса по рельсу. Если проскальзывания нет, то мгновенная ось вращения совпадает с линией касания колесной пары с рельсами, и перемещается со скоростью вагона.
Соответственно двум способам представления плоское движение может быть описано: либо уравнением основного закона динамики вращательного движения относительно мгновенной оси
, (10.3)
либо системой двух уравнений: второго закона Ньютона для поступательного движения тела как материальной точки, расположенной в центре масс, и основного закона динамики вращательного движения тела относительно оси, проходящей через центр масс
и (10.4)
В уравнениях J 0 и Jс – моменты инерции тела относительно выбранных осей вращения О или С. Соотношение между моментами инерции тела относительно осей О или С определяют по теореме Штейнера.
Теорема Штейнера
Момент инерции является мерой инертности тела при вращательном движении и по определению равен сумме произведений масс частиц тела mi на квадраты их расстояний r до оси вращения:
. (10.5)
Представим вектор от оси С– С до некоторой точки массы mi как сумму векторов (рис. 10.3). Подставив в определяющую формулу момента инерции (10.5) радиус - вектор r и возведя сумму в квадрат, получим
. (10.6)
Первый член этого уравнения J 0 – момент инерции тела относительно оси О – О, проходящей через центр масс. Во втором члене сумма определяет положение центра масс относительно оси О – О, и так как ось проходит через центр масс, то эта сумма равна нулю. Третий член – это произведение суммы масс частиц (то есть массы тела) на квадрат расстояния между осями. Итак, момент инерции равен
Jс = J 0 + m а 2. (10.7)
Это уравнение теоремы Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной данной оси, и произведению массы тела на квадрат расстояния между осями.
В тех случаях, когда момент инерции относительно оси, проходящей через центр масс J 0 , можно сравнительно легко рассчитать, теорема Штейнера позволяет определить момент инерции относительно произвольной оси Jс, избежав весьма трудоемких расчетов.