Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Модели с бинарными фиктивными переменными




Результативная переменная у в нормальной линейной модели регрессии является непрерывной величиной, способной принимать любые значения из заданного множества. Но помимо нормальных линейных моделей регрессии существуют модели регрессии, в которых переменная у должна принимать определённый узкий круг заранее заданных значений.

Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений

В качестве примеров бинарных результативных переменных можно привести:

Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом:

Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yi прогноз, полученные с помощью данной модели, будут выходить за пределы интервала [0;+1] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [0;+1].

Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам:

1) F(–∞)=0;

2) F(+∞)=1;

3) F(x1)>F(x2) при условии, чтоx1> x2.

Данным трём свойствам удовлетворяет функция распределения вероятности.

Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде:

prob(yi=1)=F(β0+β1xi), где prob(yi=1) – это вероятность того, что результативная переменная yi примет значение, равное единице.

В этом случае прогнозные значения yiпрогноз, полученные с помощью данной модели, будут лежать в пределах интервала [0;+1].

Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом:

Векторная форма модели бинарного выбора с латентной переменной:

В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi*:

Модель бинарного выбора называется пробит-моделью или пробит-регрессией, если она удовлетворяет двум условиям:

1) остатки модели бинарного выбора εi являются случайными нормально распределёнными величинами;

2) функция распределения вероятностей является нормальной вероятностной функцией.

Пробит-регрессия может быть представлена с помощью выражения:

NP(yi)=NP(β0+β1x1i+…+βkxki),

где NP – это нормальная вероятность (normal probability).

Модель бинарного выбора называется логит-моделью или логит-регрессией (logit regression), если случайные остатки εi подчиняются логистическому закону распределения.

Логит-регрессия может быть представлена с помощью выражения:

Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1].

Обобщённый вид модели логит-регрессии:

Достоинством данной модели является то, что результативная переменная yi может произвольно меняться внутри заданного числового интервала (не только от нуля до плюс единицы).

Логит-регрессия относится к классу функций, которые можно привести к линейному виду. Это осуществляется с помощью преобразования, носящего название логистического или логит преобразования, которое можно проиллюстрировать на примере преобразования обычной вероятности р:

Качество построенной логит-регрессии или пробит-регрессии характеризуется с помощью псевдо коэффициента детерминации, который рассчитывается по формуле:

Если значение данного коэффициента близко к единице, то модель регрессии считается адекватной реальным данным.

При построении модели регрессии может возникнуть ситуация, когда в неё необходимо включить не только количественные, но и качественные переменные (например, возраст, образование, пол, расовую принадлежность и др.).

Фиктивной переменной наз-тся атрибутивный или качественный фактор, представленный посредством определённого цифрового кода.

Наиболее наглядным примером применения фиктивных переменных является модель регрессии, отражающая проблему разрыва в заработной плате у мужчин и женщин.

Предположим, что на основе собранных данных была построена модель регрессии, отражающая зависимость заработной платы рабочих y от их возраста х: yt=β0+β1xt.

Однако данная модель регрессии не может в полной мере охарактеризовать вариацию результативной переменной. Поэтому в модель необходимо ввести дополнительный фактор, например пол, на основании предположения о том, что у мужчин в среднем заработная плата выше, чем у женщин. В связи с тем, что переменная пола является качественной, её необходимо представить в виде фиктивной переменной следующим образом:

С учётом новой фиктивной переменной модель регрессии примет вид:

y=β0+β1x+β2D, где β2 – это коэффициент, который характеризует в среднем разницу в заработной плате у мужчин и женщин.

26. Моделирование тенденции временных рядов.

27. Мультиколлинеарность факторов – понятие, проявление и меры устранения.

Мультикол-ть - тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат. Эта связь затрудняет оценивание параметров регрессии в частности, при анализе эконометрической модели.

Чем выше корреляция, тем выше дисперсии и больше риск получить несостоятельные оценки. В этом случае говорят о мульти-ти. Любая регрессия страдает от мульти-ти. Задача определить, когда это влияние становится существенным.

Одним из способов обнаружения мульти-сти является вычисление коэффициентов парной корреляции между факторами. Считается, что если коэффициент корреляции превышает 0,8 (эмпирическое правило), то мульти-сть присутствует.

Меры устранения:

• дополнить модель новой информацией, по возможности, не обладающей свойствами коллинеарности (т. е. если речь идет о точках, они не должны находиться на одной прямой, если о векторах — они не должны быть параллельными друг другу, отличаясь только скалярными множителями);

• ввести некоторые ограничения на параметры модели;

• использовать вероятностные характеристики параметров (напр., опираясь на предшествующие наблюдения за соответствующими величинами).

Методы устранения мультиколлинеарности

1) Метод дополнительных регрессий

o Строятся уравнения регрессии, которые связывают каждый из регрессоров со всеми остальными

o Вычисляются коэффициенты детерминации для каждого уравнения регрессии

o Проверяется статистическая гипотеза с помощью F-теста

Вывод: если гипотеза не отвергается, то данный регрессор не приводит к мульти-ости.

2) Метод последовательного присоединения

o Строится регрессионная модель с учетом всех предполагаемых регрессоров. По признакам делается вывод о возможном присутствии мульти-сти

o Расчитывается матрица корреляций и выбирается регрессор, имеющий наибольшую корреляцию с выходной переменной

o К выбранному регрессору последовательно добавляются каждый из оставшихся регрессоров и вычисляются скорректированные коэффициенты детерминации для каждой из моделей. К модели присоединяется тот регрессор, который обеспечивает наибольшее значение скорректированного

3) Метод предварительного центрирования - суть метода сводится к тому, что перед нахождением параметров математической модели проводится центрирование исходных данных: из каждого значения в ряде данных вычитается среднее по ряду: . Эта процедура позволяет так развести гиперплоскости условий МНК, чтобы углы между ними были перпендикулярны. В результате этого оценки модели становятся устойчивыми.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 2289 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.