Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интервальная оценка параметров уравнения парной регрессии




При построении интервальных оценок используются специальные статистики с известным распределением. Для построения доверительных интервалов параметров парной регрессионной модели a и b формируются t-статистики, включающие вспомогательные случайные величины:

V=Σet^2/σ^2, Zb=(b-b^)/σb^ Za=(a-a^)/σa^

Добавим к предпосылкам классической регрессионной модели предпосылку нормального распределения случайного возмущения εt примерно равно N(0, ϭ^2), тогда статистика V имеет распределение хи-квадрат, а статистики Za и Zb - нормально распределены.

Покажем, что Zb=(b-b^)/σb^ - N(0,1) и Za=(a-a^)/σa^ - N(0,1)

Из нормальности распределения возмущений следует нормальность совместного распределения выборочных данных Yt, (t=1,…,n), а т.к. МНК-оценки коэффициентов регрессии a^ и b^ являются линейными функциями Yt, то их совместное распределение также является нормальным, и a^ - N(a, σa^^2), b^ - N(b, σb^^2).

Распределения ошибок оценок параметров: b-b^ - N(0, σb^^2), a-a^ - N(0, σa^^2), действительно

E(a-a^)=a-E(a^)=0, E(b-b^)=b-E(b^)=0, т.к. МНК – оценки b^ и a^ являются несмещенными. Дисперсии: Var{a-a^}=Var{a^}= σa^^2, Var{b-b^}=Var{b^}= σb^^2.

Следовательно, случайные величины Zb=(b-b^)/ σb^ и Za=(a-a^)/ σa^ имеют нормальное распределение с нулевым матем. ожиданием и единичной дисперсией Za – N(0,1), Zb – N(0,1).

Статистика, сформированная по правилу t=Z/ √V/k, где Z – стандартная нормальная случайная величина, а V – независимая от Z величина, распределенная по закону хи-квадрат с k степенями свободы, имеет t-распределение (Стьюдента) с параметром k. Таким образом, случайные величины tb=Zb/√V/(n-2) = Zbσ/√Σet^2/(n-2) = Zbσ/√s^2 = ((b-b^)σ)/ σb^*s,

ta= Za/√V/(n-2) = Zaσ/√Σet^2/(n-2) = Zaσ/√s^2 = ((b-b^)σ)/ σa^*s.

Представляют собой t-статистики с параметром n-2. Преобразуем выражения для данных статистик к виду, удобному для вычисления. В силу того что σb^/σ=sb^/s и σa^/σ=sa^/s, значения t-статистик удобно вычислять по формулам:

tb=(b-b^)/sb^, ta=(b-b^)/sa^, где sb^^2=s^2/Σxt^2, sa^^2=s^2 * ΣXt^2/nΣxt^2.

Выражения представляют собой нормированные ошибки оценок параметров и называются дробью Стьюдента. Дробь Стьюдента имеет распределение Стьюдента с (n-2) степенями свободы. Задаваясь некоторым уровнем значимости α, по таблицам t-распределения можно определить критическое значение статистики tкр и, применяя стандартную процедуру, построить доверительный интервал, который с доверительной вероятностью 1-α накрывает значение статистики t:

P{/t/<tкр}=2∫0taS(t,v)dt=P{-tкр<t<tкр}=1-α, где S(t,v) – плотность распределения Стьюдента, tкр – табличное значение статистики Стьюдента для данной степени свободы v=n-2 и уровня значимости α.

17. Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.

Зависимость между экономическими переменными типа Y=f(X)+ε (где f(X) – часть эндогенной (зависимой) переменной, полностью объясняемая значением экзогенной (независимой) переменной Х и называемая уравнением регрессии; ε – случайное возмущение – часть зависимой переменной, которая не может быть объяснена значением Х) называется регрессионной зависимостью, эконометрические модели со спецификацией вида: Y=f(X)+ε - регрессионноыми моделями. Регрессионная зависимость является обобщением функциональной зависимости между переменными и при ε=0 сводится к ней.

Независимые переменные в регрессионных моделях называются регрессорами. В зависимости от типа уравнения регрессии регрессионные модели подразделяются на линейные и нелинейные. В зависимости от количества регрессоров, входящих в спецификацию, регрессионные модели подразделяются на модели парной (простой, двумерной) регрессии и модели множественной (многомерной) регрессии. В парной регрессионной модели эндогенная переменная зависит только от одного регрессора.

Спецификация парной линейной регрессионной модели имеет вид Y=a+bX+ε, где а и b – параметры модели, Х – экзогенная переменная (независимая) – регрессор, У – эндогенная переменная (зависимая) – отклик (случайная величина), ε – случайное возмущение (случайная величина), характеризующее отклонение от уравнения регрессии f(X)=a+bX.

Уравнения для отдельных наблюдений зависимой переменной У записываются в виде (схема Гаусса-Маркова) Yt=a+bXtt, где Yt, Xt, t=1,..,n – выборочные данные (наблюдения), n – объем выборки (количество наблюдений).

Относительно возмущений εt, t=1,…,n, в регрессионных моделях принимаются следующие предположения (условия Гаусса-Маркова):

1.математическое ожидание случайных возмущений равно нулю (Е{εt}=0, t=1,…,n)

2.дисперсия возмущений постоянна и не зависит от номера (момента) наблюдений t:Var{ εt}=constt=сигма2

3.возмущения для различных наблюдений некоррелированы: Cov{ εt, εs}=0 при t неравно s

Регрессионная модель Y=a+bX+ε с учетом условий Гаусса-Маркова называется классической регрессионной моделью.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1894 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.