Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение соответствия распределения случайных возмущений нормальному закону распределения




Непрерывная случайная величина Х называется распределенной по нормальному закону с параметрами μ и σ, если ее плотность распределения есть

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

 

Закон распределения для случайного возмущения принимает вид:

 
 

 


Если случайное возмущение подчиняется нормальному закону распределения, то оценки параметров модели несмещенные и эффективные.


Основные числовые характеристики вектора остатков в классической множественной регрессионной модели.

Классическая линейная модель множественной регрессии (КЛММР) представляет собой простейшую версию конкретизации требований к общему виду функции регрессии f(X), природе объясняющих переменных X и статистических регрессионных остатков e(Х) в общих уравнениях регрессионной связи. В рамках КЛММР эти требования формулируются следующим образом:

Из (2.5) следует, что в рамках КЛММР рассматриваются только линейные функции регрессии, т.е.

В повторяющихся выборочных наблюдениях (xi(1), xi(2),..., хi(p); yi) единственным источником случайных возмущений значений yi являются случайные возмущения регрессионных остатков ei.

Кроме того, постулируется взаимная некоррелированность случайных регрессионных остатков (E(eiej) = 0 для i ¹ j). Это требование к регрессионным остаткам e1,...,en относится к основным предположениям классической модели и оказывается вполне естественным в широком классе реальных ситуаций. Тот факт, что для всех остатков e1,e2,...,en выполняется соотношение Eei2; =s2, где величина s2 от номера наблюдения i не зависит, означает неизменность дисперсий регрессионных остатков. Последнее свойство принято называть гомоскедастичностью регрессионных остатков.

Сумма квадратов остатков (RSS) измеряет необъясненную часть вариации зависимых переменных. Она используется как основная минимизируемая величина в методе наименьших квадратов и для расчета других показателей.

Стандартная ошибка регрессии (SEE) измеряет величину квадрата (ошибки), приходящейся на одну степень свободы модели.

Она используется в качестве основной величины для измерения качества оценивания модели (чем она меньше, тем лучше).






Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 403 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.