Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Размерность линейного пространства




Определение. Число n называется размерностью линейного пространства V, а само пространство V называется n-мерным, если в V существует линейно независимая система из n векторов, а любая система из (n + 1)-го вектора линейно зависима. Размерность пространства по определению считается равной нулю.

Следствие. В n -мерном пространстве любая система из m векторов при m > n линейно зависима.

Размерность линейного пространства V сокращенно обозначается . Если , то пространство будем обозначать . Линейные n -мерные пространства называются конечномерными.

Определение. Линейное пространство V называется бесконечномерным, если в V найдется линейно независимая система из n векторов.

Теорема 3.2. Для того чтобы линейное пространство было n -мерным, необходимо и достаточно, чтобы в нем существовал базис, состоящий из n векторов.

Достаточность. Дано: в пространстве V существует базис из n векторов

(). (3.27)

Тогда в V есть линейно независимая система из n векторов (это система (3.27)). Покажем, что любая система из (n + 1)-го вектора в этом пространстве линейно зависима. Выберем одну из них:

(). (3.28)

Каждый вектор системы (3.28) можно разложить по базису (3.27). Обозначим – координатные столбцы векторов системы (2) в базисе (1). Тогда

(так как эта матрица имеет только n строк). По матричному критерию система (3.28) линейно зависима и, таким образом, .

Необходимость. Дано: . Согласно определению, в пространстве существует линейно независимая система из элементов. Пусть

() – (3.29)

одна из таких систем. Но система

() (3.30)

линейно зависима. По 4-му свойству линейной зависимости (§ 2) вектор

можно представить в виде линейной комбинации векторов системы (3.29), т. е.

Таким образом, (3.29) – система образующих пространства V, а значит, и его базис. ◄

Замечание. При доказательстве необходимости мы одновременно показали, что в n -мерном пространстве любая линейно независимая система из n векторов является базисом.

Следствие. Любой базис конечномерного линейного пространства V содержит одинаковое количество векторов.

►Пусть в пространстве наряду с базисом (3.29) есть еще и некоторый базис

(), (3.31)

состоящий из m векторов (m ≠ n). Рассмотрим два случая:

а) m > n. Тогда (3.31) линейно зависима согласно следствию к определению размерности, что противоречит определению базиса.

б) m < n. Так как (3.31) – базис пространства , то по теореме 3.2 , поэтому система (3.29) линейно зависима, что противоречит определению базиса. Таким образом, m = n. ◄

Вывод: размерность линейного пространства совпадает с количеством векторов в любом из его базисов.

Используя примеры базисов, приведенные в § 3, можно утверждать, что: , , , , , . Примером бесконечномерного пространства может служить пространство всех функций.

Упражнение. Докажите, что .

Теорема 3.3. В n- мерном линейном пространстве любую линейно независимую систему из m векторов при m < n можно дополнить до базиса.

►Пусть

– (3.32)

линейно независимая система пространства . Предположим, что при всех система линейно зависима. Тогда на основании свойства 4º § 2, вектор можно выразить через векторы системы (3.32), поэтому (3.32) – система образующих, а значит, и базис пространства , следовательно, , что противоречит условию. Таким образом, найдется вектор такой, что система

– (3.33)

линейно независима. Если m + 1 = n, то (3.33) – базис пространства . В противном случае с системой (3.33) поступаем так же, как и с системой (3.32). После конечного числа шагов получаем базис пространства .◄

 

 

Вопрос 6





Поделиться с друзьями:


Дата добавления: 2016-03-25; Мы поможем в написании ваших работ!; просмотров: 841 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.