Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Функция Лагранжа простейших систем




 

Рассмотрим системы с одной степенью свободы.

1. Плоский математический маятник (Рис.3).

- уравнение связи.

Число степеней свободы равно единице (см. §1).

- кинетическая энергия.

U – потенциальная энергия.

U=mgh, где h – уровень подъёма над положением равновесия.

Имеем:

Рассмотрим случай малых колебаний:

, φ – измеряется в радианах.

L – длина дуги, R – радиус окружности. Тогда:

Функция Лагранжа:

Уравнение движения:

Для решения дифференциального уравнения второго порядка необходимо два начальных условия:

1)

2)

 

2. Линейный гармонический осциллятор (Рис.4).

k – упругость пружины,

l0 – длина пружины в недеформированном состоянии,

l – длина пружины в деформированном состоянии.

По закону Гука (для малых деформаций):

- малые деформации.

По второму закону Ньютона:

,

, , где .

Решение аналогично случаю 1. Начальные условия:

1)

2)

 

3. Аналогично для вертикального гармонического осциллятора (Рис.5)

(По закону Гука)

В данном случае: - не является результирующей силой, а лишь возвращающей систему к положению равновесия.

Задачи

 

 

 
 

1. Наити функцию Лагранжа двойного плоского маятника, находящегося в однородном поле тяжести (ускорение силы тяжести g).

Решение. в качестве координат берём углы φ1 и φ2, которые нити l1 и l2 образуют с вертикалью. Тогда для точки m1 имеем:

чтобы найти кинетическую энергию второй точки, выражаем её декартовы координаты x2, y2 (начало координат в точке подвеса, ось y – по вертикали вниз) через углы φ1 и φ2:

после этого получим:

окончательно:

 
 

2. Найти функцию Лагранжа плоского маятника, находящегося в однородном поле тяжести (ускорение силы тяжести g) с массой m2, точка которого (с массой m1 в ней) может совершать движения по горизонтальной прямой.

 

Решение. Вводя координату x точки m1 и угол φ между нитью маятника и вертикалью, получим:

Интегралы движения в методе Лагранжа.

 

Динамические переменные в методе Лагранжа – это обобщённые координаты и обобщённые скорости. Всего их 2n, они задают начальное состояние систем.

Интеграл движения – это функция динамических переменных и времени , сохраняющая своё значение при движении системы (в КП).

- постоянство означает, что полная производная по времени должна быть равна нулю:

При n=1 имеем:

, .

 

Преобразование Галилея.

Преобразование импульса:

Тогда:

Рассмотрим такую систему отсчёта , в которой полный импульс системы (это есть система центра масс), тогда имеем:

,

где - радиус вектор центра масс

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 7994 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2484 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.