Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнения Максвелла в среде без учёта пространственно-временной дисперсии




 

 

 

С помощью этих уравнений можно описывать электромагнитное поле в среде. В среде будем ставить индекс «»=микро

 

 

включает в себя как связанные, так и свободные заряды в веществе. Каждой точке пространства ставится в соответствие функция . Это значит, что мы заменяем реальную среду моделью – сплошной средой, т.е. мы свойства разных точек «размазываем» по пространству. Существуют следующие способы описания сплошной среды на основе реальной среды:

1. Усреднение по некоторому физическому объёму и времени .

2. Статистическое усреднение. Считаем что у нас есть макроскопически-идентичный ансамбль систем(т.е. все внешние условия одинаковы). Здесь производятся измерения для отдельных ансамблей, а потом происходит усреднение. Этот способ более предпочтителен.

Усреднение будем обозначать символами «< >». Отметим, что усреднение коммутативно с дифференциальными операторами.

Итак, усредняем:

 

 

Среда под действием внешнего электромагнитного поля поляризуется, т.е. реагирует на внешнее воздействие. В случае, когда отсутствует пространственная дисперсия, поляризация характеризуется векторами электрической и магнитной поляризации . Можно показать, что и выражаются через :

 

Введём обозначения: ;

Перенесём второе слагаемое из правой части в левую и объединим его с :

 

 

Итак, уравнения Максвелла для среды имеют вид:

 

 

Теорема Стокса.

 

- теорема Стокса

- Теорема Гаусса в операторной форме

Например

- теорема Стокса в операторной форме.

 

Задачи

1. Пользуясь теоремой Остроградского-Гаусса, вычислить интегралы:

если объем, который охватывает замкнутая поверхность, равен V; A – постоянный вектор.

 

Решение. Умножим искомый интеграл на постоянный вектор р:

Так как вектор р произволен, то

.

Аналогично показывается, что

Функциональные соотношения различных полей

 

Здесь - диэлектрическая проницаемость, а - диэлектрическая восприимчивость.

 

-разложение функции в ряд Маклорена.

Если же :

 

 

Возможно разложить по векторам в ряд Маклорена:

Первое слагаемое – это индукция, связанная с собственным дипольным моментом в отсутствие внешнего поля (собственная поляризация) – пироэлектрики.

Второе слагаемое – линейные среды.

Третье слагаемое – учёт нелинейности среды.

Среды, для которых нелинейные члены в разложении индукции по полю имеют вес, называются нелинейными.

 

Линейные среды

Введём обозначение: , тогда

Аналогично вводятся тензоры:

Для ферромагнетиков - учёт нелинейности.

 

Неоднородные среды

 

Среды, для которых материальные характеристики () являются функциями координат.

Т.е. характеристики трансляционно неинвариантны.

Введём понятие сплошной среды. Сплошная среда – это среда в каждой точке которой измерение материальных характеристик даёт не нулевой результат. Сплошная среда – это модель. В реальной среде имеются микро-пустоты, т.е. вещество локализовано в некоторых точках пространства. Чтобы перейти к сплошной среде, нужно усреднить микро-параметры по достаточно большому объёму.

 

Анизотропные среды

Анизотропные среды (свойства), это такие среды, свойства которых зависят от направления, в котором это свойство измеряется.

Пусть в каком-то направлении исследуются оптические свойства среды. Затем мы повернули направление исследования, и оптические свойства изменились, т.е. оптические свойства зависят от угла поворота.

 

Так как свойства меняются, то они неинвариантны относительно вращения. Этим свойством обладает всякая анизотропная среда.

Для тензоров 2-го ранга есть исключения:

Кубические системы описываются тензорами изотропного вида, т.е.

Монокристалл – есть однородная анизотропная среда.

Тензоры и их свойства.

Запись преобразований тензора 2-го ранга при вращении.

Пусть у нас есть монокристалл определённого вещества. Существует набор преобразований при которых его свойства инвариантны. Операции симметрии можно задать матрицами ортогональных преобразований

 

Оператор принадлежит к симметрическим операторам. Итак, условие инвариантности:

Для монокристалла орторомбической системы:

Оси выбираются к характерным направлениям в кристалле.

Для монокристаллов гексагональной системы:

Для кубической:

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 610 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.