Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Схема однофакторного дисперсионного комплекса




 

Источник вариации Сумма квадра-тов отклонений (девиация) Число степеней свободы Средний квадрат отклонений, вид дисперсии F – крите рий
Между группами     факторная  
Внутри групп   остаточная или случайная
Общая   общая

 

После подтверждения гипотезы о статистической существенности влияния факторного признака на изменение результативного рассчитываются показатели тесноты связи между ними.

По итогам аналитической группировки по результативному признаку рассчитываются три вида дисперсий – общая (), межгрупповая ()и внутригрупповая, т.е. средняя из групповых ()2. Их соотношения позволяют рассчитать два показателя тесноты связи между факторным и результативным признаками:

- эмпирическое корреляционное отношение: ;

- коэффициент детерминации: .

Эмпирическое корреляционное отношение характеризует тесноту связи между изучаемыми факторами, а коэффициент детерминации измеряет, какая часть общей колеблемости результативного признака вызывается колеблемостью факторного. Они принимают значения в интервале [0,1]: чем ближе к 1, тем теснее связь, и, наоборот. По шкале Чеддока с помощью эмпирического корреляционного отношения оценивается теснота связи между изучаемыми признаками.

Таблица 10.2

Шкала Чеддока

 

Величина показателя тесноты связи по абсолютной величине 0,1 - 0,3 0,3 - 0,5 0,5 - 0,7 0,7 - 0,9 0,9 - 0,99
Характеристика связи Сла бая Умерен ная Замет ная Высокая (тесная) Весьма высокая (очень тесная)

 

Корреляционно-регрессионный анализ. Корреляционной связью между двумя признаками называется такая связь, при которой изменение среднего значения факторного признака вызывает изменение среднего значения результативного.

Конечная цель статистического изучения корреляционной связи состоит в получении статистической модели этой зависимости в форме уравнения регрессии или уравнения связи. Решение этой задачи осуществляется в следующей последовательности.

Осуществляется логический анализ сущности изучаемого явления и причинно-следственных связей, т.е. устанавливается результативный признак () и фактор (или факторы) его изменения (х12,… ). Связь двух признаков является парной корреляцией, а нескольких - множественной.

Проверка требований, предъявляемых к факторным и результативным признакам:

- однородность распределения, т.е. коэффициенты вариации не должны превышать 33 %: Vу, ;

- соответствие нормальному закону распределения, - чаще всего используется правило “трех сигм”.

Если и , то с вероятностью 0,997 можно утверждать, что распределение соответствующих признаков (ре-зультативного и факторного) соответствуют нормальному закону распределения.

независимость по объектам наблюдения. Если рассматривается статическое распределение или ряды распределения, то это требование подтверждается путем логического анализа, т.е. apriori. В то же время при построении регрессионных моделей по рядам динамики дополнительно необходимо проверять гипотезы об отсутствии автокорреляции и тенденции в рядах динами (стр.325-326. данного раздела);

отсутствие мультиколлинеарности между факторными признаками (при множественной корреляции), т.е. и () не должны быть связаны между собой ни функциональной (мультипликативной или аддитивной), ни тесной корреляционной связью, т.е. или , k є ; или ≤ 0,8.

все факторные и результативные признаки должны иметь количественное выражение и взаимно соответствовать друг другу в пространстве, т.е. по объектам наблюдения, и по времени.

3. Исключение из массива первичной информации всех резко-выделяющихся (аномальных) единиц признаков-факторов и форми-рование нового массива для последующего анализа.

4. Определение формы и направления связи. В случае парных зависимостей применяются: содержательный анализ, графический метод, метод аналитических группировок и построение корреляцион-ных таблиц.

На основе данных аналитической группировки строится график эмпирической линии связи, вид которой не только позволяет судить о возможном наличии связи, но и дает некоторое представление о ее форме.

При построении корреляционных таблиц строится таблица взаимной сопряженности факторного и результативного признака, и по распределению частот можно предположить форму связи между ними (тема 2).

Реализация графического метода предполагает построение корреляционного поля, т.е. множества точек с координатами (, , , - номер объекта наблюдения), в прямоугольной системе координат. По расположению точек (их плотности и направлению) можно судить о возможной форме связи между признаками.

При множественных зависимостях форма связи определяется путем содержательного анализа или по соотношению формальных критериев аппроксимации: из нескольких форм связи (линейная, степенная, логарифмическая и т.д.) выбирают тот вариант, для которого выполняется следующее соотношение критериев:

- - критерий метода наименьших квадратов;

- F –критерий – критерий Фишера-Снедскора;

- R 2 - максимальное значение множественного коэффициента детерминации.

5. Построение модели связи. На этом этапе определяются параметры уравнения связи по методу наименьших квадратов; - в результате чего строится система нормальных уравнений, решение которое и дает значение необходимых параметров (табл. 10.3).

6. Оценка тесноты связи. Для парных линейных зависимостей рассчитываются: линейный или парный коэффициент корреляции (rху), коэффициент детерминации (dху) и коэффициент эластичности (Кэл .) по следующим формулам: ; = ; Кэл .= .

Для нелинейных зависимостей, - теоретическое корреляционное отношение (), коэффициент детерминации () и коэффициент эластичности (К эл .).

; = ; Кэл .= ;

где - первая производная по уравнению связи.

7. Проверка статистической достоверности или существенности (значимости) показателей тесноты связи, уравнения связи и параметров уравнения связи.

Оценка достоверности парного коэффициента корреляции, корреляционного отношения и параметров линейного уравнения связи проводится на основе критерия Стьюдента:

- рассчитывается расчетное значение критерия ():

- для показателей тесноты связи: или ;

- для параметра уравнения связи: ,

где .


Таблица 10.3





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 864 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.