Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Свойства функции распределения




 

1 (Это – свойство вероятности, а - вероятность).

2 - неубывающая функция по каждому из своих аргументов. (В самом деле, если , то событие включено в событие , следовательно, его вероятность меньше)

3 (события - невозможные, поэтому их вероятность равна нулю).

4 (событие достоверно).

5 = - - +

 
 


Геометрически, - площадь

полосы левее и ниже точки ,

Вычитая из нее и ,

мы два раза вычтем площадь

полосы левее и ниже точки .

Для того, чтобы получить

площадь прямоугольника –

левую часть равенства, надо

вычитать эту площадь один раз,

поэтому надо добавить ее, т.е.

в правую часть равенства.

6. непрерывна слева по каждому из аргументов

7. . Так как событие достоверно, то пересечение событий и есть событие . Поэтому первое равенство справедливо. Аналогично доказывается справедливость второго равенства.

Двумерная случайная величина (X,Y) дискретна, если X, Y - дискретные случайные величины. Для нее составляется таблица распределения – аналог ряда распределения для одномерной случайной величины.

 

 

  X Y
y1 y2 ….. ym PX
x1 p11 p12 p1m pX1
x2 p21 p22 p2m pX2
…….
xn pn1 pn2 pnm pXn
PY pY1 pY2 pYm  

 

Здесь pnm = , pYm = = p1m+ p2m +…+pnm,

pXn = pn1 + pn2 + … +pnm.

График функции распределения для двумерной случайной величины напоминает «лестницу», уровень ступеней которой изменяется скачком на pij при переходе через точку (xi , yj) в положительном направлении по оси OX и по оси OY. Если зафиксировать x = xi, то при увеличении y эти скачки будут на pi1, pi2, … pim (от нуля до pXi). Если зафиксировать y = yj, то при увеличении x скачки будут на p1j, p2j, … pnj (от нуля до pYj). Нижние ступени (при x x1 и y y1) находятся на нулевом уровне, самая верхняя ступень (при x>xn, y>ym) находится на уровне 1. Если зафиксировать x > xn то при увеличении y эти скачки будут на pY1, pY2, … pYm (от нуля до 1). Если зафиксировать y > ym, то при увеличении x скачки будут на pX1, pX2, … pXn (от нуля до 1).

Пример. Проводятся два выстрела в мишень. При каждом выстреле вероятность попадания p, вероятность промаха q = 1- p. Случайная величина Xi – число попаданий при i – том выстреле. Найдем закон распределения случайного вектора (X1, X2)= .

  X Y
y1=0 y2=1 PX
x1=0 q2 qp pX1=q
x2=1 pq p2 pX2=p
PY pY1=q pY2=p  

 

Построим функцию распределения

. В самом деле, при – событие{X<x,Y<y} - невозможное, при (x>1, y>1) событие {X<x,Y<y} – достоверное.

При событие {X<x,Y<y} представляет собой событие {X=0,Y=0}. Поэтому при F(x) = P{X=0,Y=0}= q2.

При событие {X<x,Y<y} представляет собой объединение несовместных событий {X=0,Y=0} и {X=0,Y=1}. Поэтому при F(x) =. P{X=0,Y=0}+ P{X=0,Y=1}= q2 + pq = q(p+q)=q.Аналогично, в случае F(x) = P{X=0,Y=0}+ P{X=1,Y=0}= q2 + pq = q(p+q)=q

 

Двумерная случайная величина непрерывна, если X, Y, непрерывные случайные величины и ее функцию распределения можно представить в виде сходящегося несобственного интеграла от плотности распределения.

.

Двойной интеграл можно записать в виде повторных (внешний по x, внутренний по y и наоборот). Если предполагать непрерывность плотности по x и y, то, дифференцируя по переменным верхним пределам, получим

.

 

Свойства плотности.

 

1. (функция распределения – неубывающая функция).

2. (по свойству 5 функции распределения) Справедливо обобщение .

3.

4. (по свойству 4 функции распределения)

5.

6. , (Свойство 7 функции распределения)

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 347 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.