Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Распределения, связанные с повторными испытаниями




Геометрическое распределение.

Рассмотрим схему Бернулли. Обозначим Х – число испытаний до первого успеха, если вероятность успеха в одном испытании р. Если первое испытание успешно, то Х = 0. Следовательно, . Если Х = 1, т.е. первое испытание неудачно, а второе успешно, то по теореме умножения . Аналогично, если Х = n, то все испытания до n-ого неудачны и . Составим ряд распределения случайной величины Х

     

 

Случайная величина с таким рядом распределения имеет геометрическое распределение.

Проверим условие нормировки .

Гипергеометрическое распределение.

Рассмотрим схему испытаний, обобщающую задачу о выборке бракованных деталей и похожую на ситуацию А с N исходами. Пусть имеется n элементов, разделенных на группы: n1 элементов первого типа, n2 – второго типа и т.д., nN – N-ого типа. Какова вероятность, выбрав m элементов, получить среди них m1 элементов из первой группы, m2 – из второй и т.д. mN - из N-ой?

Ее легко вычислить по классическому определению вероятностей с учетом теоремы умножения:

.

В частности, при N=2 (m2=m-m1, n2=n-n1) (задача о бракованных деталях)

Формула Пуассона и распределение Пуассона.

Пусть число испытаний n велико, вероятность p мала и np мало. Тогда вероятность наступления m успехов в n испытаниях можно приближенно определить по формуле Пуассона:

.

Заметим, что по формуле Пуассона можно считать вероятность неуспеха, если q мало, приняв

Случайная величина с рядом распределения m, имеет распределение Пуассона. Чем больше n, тем формула Пуассона точнее. Для грубых расчетов формулу применяют при n =10, 0 – 2, при n = 100 0 – 3. При инженерных расчетах формулу применяют при n = 20, 0 – 3, n =100, 0 – 7. При точных расчетах формулу применяют при n = 100, 0 – 7, n =1000, 0 – 15.

Вычислим математическое ожидание и дисперсию случайной величины, имеющей распределение Пуассона.

,

 

 

Лекция 5

 

Экспоненциальное и нормальное распределения.

 

Экспоненциальное распределение.

Непрерывная случайная величина имеет экспоненциальное распределение, если ее плотность распределения задается формулой

, - параметр экспоненциального распределения.

Для случайной величины, имеющей экспоненциальное распределение, , .

Если времена между последовательными наступлениями некоторого события – независимые, экспоненциально распределенные случайные величины с параметром , то число наступлений этого события за время t имеет пуассоновское распределение с параметром . Геометрическое распределение является дискретным аналогом экспоненциального распределения.

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 330 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2575 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.