Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Геометрическая вероятность




Формула классической вероятности применяется только в схеме случаев, что встречается довольно редко. Отношение Р(А)= NA/N представляет собой «долю» благоприятных исходов среди всех возможных исходов. Аналогичным образом подсчитывают вероятность события в некоторых более сложных случаях, когда имеется бесконечное число равновозможных исходов.

Событие А – волчок касается плоскости точкой из окрашенного сектора. Множество точек на ободе в окрашенном секторе имеет мощность континуума. Делим всю окружность на N маленьких одинаковых дуг. Число дуг на окружности, принадлежащих окрашенному сектору, пусть равно NA. . В общем случае имеется мера mes соответствующая (в нашем случае mes = 2 ) и мера mes А, соответствующая А (в нашем случае mes А = ) и т.д.

 

Пример. Задача о встрече. Два студента договорились встретиться от 10 до 11 часов на определенном месте, причем первый пришедший на место ждет товарища 15 минут и уходит. Какова вероятность встречи?

Выберем начало системы координат в точке (10, 10). Отложим по осям системы координат x- время прихода первого студента, y – время прихода второго студента.

 

Тогда множество |x-y|<1/4, 0<x<1, 0<x<1, 0<y<1

содержит точки (события) встречи студентов. Его мера (площадь) mesA равна 1- (3/4)2 = 7/16. Так как mesW =1, то P(A) = 7/16.

 

 

Статистическая вероятность

 

Формулы классической вероятности и геометрической вероятности справедливы только для случая равновозможных исходов. В действительности мы на практике имеем место с неравновозможными исходами. В этих случаях можно определить вероятность случайного события, используя понятие частоты события. Допустим, что нам требуется определить вероятность того, что в испытании произойдет событие А. Для этого в одинаковых условиях проводятся испытания, в каждом из которых возможны два исхода: А и . Частотой события А будем называть отношение числа NA испытаний, в которых зафиксировано событие А к общему числу N испытаний.

Вероятностью события А называется предел частоты события А при неограниченном увеличении числа испытаний n , т.е. . Так определяется статистическая вероятность события.

 

Заметим, что по классическому, геометрическому и статистическому определениям для вероятности события P(A) выполнены три основных свойства:

P(A)³0, 2) P(W)=1, 3) P(A1+ …+An) = P(A1) + …+P(An), если A1, An попарно несовместны. Однако в этих определениях элементарные события предполагаются равновозможными.

А.Н. Колмогоров отказался от предположения равновозможности элементарных событий, ввел сигма-алгебру событий и распространил третье свойство на счетное число событий. Это дало возможность дать аксиоматическое определение вероятности события.

 

Аксиоматическое определение вероятности (по А.Н.Колмогорову).

 

Вероятностью P(A) называется числовая функция, заданная на сигма – алгебре событий, удовлетворяющая трем аксиомам:

1) не отрицательность P(A)³0, "AÎB - сигма – алгебре событий на W

2) нормировка P(W) = 1

3) расширенная аксиома сложения: для любых попарно несовместных событий A1, … An … выполнено

P(A1+ …+An+ …) = P(A1) + …+P(An) +…

(счетная аддитивность).

Итак, по А.Н. Колмогорову вероятность (вероятностная мера) это числовая неотрицательная нормированная счетно - аддитивная функция (множества – события), заданная на сигма – алгебре событий.

Если W состоит из конечного или счетного числа событий, то в качестве сигма – алгебры B может рассматриваться алгебра S событий. Тогда по аксиоме 3 вероятность любого события A равна сумме вероятностей элементарных событий, составляющих A.

Вероятностным пространством называется тройка (W, B, P).

Свойства вероятности

1) . В самом деле, , несовместны. По аксиоме 3 .

2) P(Æ) = 0. Так как "A A+Æ = A, по аксиоме 3 P(A+Æ) = P(A) + P(Æ) = P(A) ÞP(Æ) = 0

3) Если AÌ B, то P(A) £ P(B). Так как B = A+ B\A, по аксиоме 3 P(B) = P(A) + P(B\A), но по аксиоме 1 P(B\A)³0

 

Пример. Из урны с четырьмя шарами с номерами 1, 2, 3, 4 три раза наугад вынимают шар и записывают его номер а) возвращая шары б) не возвращая шары. Какова вероятность 1) получить комбинацию 111, 2) из номеров шаров составить возрастающую последовательность?

В случае а) имеем размещения с возвращением, N = 43, 1), NA=1, P = ¼3, 2) NA = , так как возрастающую последовательность можно составить всегда из не повторяющихся номеров, P = / 43 .

В случае б) N = ,1) P = 0, так как номера шаров не повторяются, то NA =0, 2) P = 1, так как N = NA = .

Пример. Пять человек садятся в поезд метро, состоящий из пяти вагонов. Какова вероятность того, что они окажутся в разных вагонах?

Общее число элементарных событий равно числу размещений с повторением из пяти элементов по пять N = 55. Число элементарных событий, составляющих А, равно 5! Поэтому Р = 5!/ 55.

Лекция 2

Условная вероятность.

Часто приходится вычислять вероятность события А при дополнительном условии, что произошло событие В. Такую вероятность будем называть условной и обозначать Р(А/В) (вероятность события А при условии, что событие В наступило).

Если никаких дополнительных условий не накладывается, то вероятность называется безусловной. Это – обычная, определенная выше вероятность.

Рассмотрим пример. Пусть в данной аудитории присутствует N студентов. Среди них NA –любящих математику, NB – любящих физику, NАВ – любящих и математику, и физику. Лектор случайно выбирает одного студента. Введем следующие события:

А – случайно выбранный студент любит математику, В – физику, АВ – и математику, и физику. На диаграммах Венна это выглядит так.

 

Тогда вероятности этих событий равны:

(2.1)

(2.2)

(2.3)

Это безусловные вероятности.

Предположим теперь, что мы захотели узнать вероятность того, что случайно выбранный любитель физики любит еще и математику. В этом случае количество всех возможных исходов NB (выбираем только любителей физики), а количество благоприятных исходов – NАВ .

На диаграмме Венна это выглядит так

Тогда, учитывая (2.2) и (2.3), получим

= = (2.4)

 

Мы рассмотрели частный случай. Введем в общем случае следующее формальное определение.

Определение. Пусть В – событие, имеющее ненулевую вероятность, а А произвольное событие.

Положим . (2.5)

Определенную таким образом величину Р(А/В) будем называть условной вероятностью события А при условии В.





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 452 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.