Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формула полной вероятности




Пусть требуется определить вероятность события А, которое может произойти в сочетании с одним из событий Н1, Н2,…, Н n, образующих полную группу несовместных событий ( Ø, ). Эти события будем называть гипотезами.

       
   
 

Н1 Н2 Н3

АН1 АН2 АН3

АНn-2 АНn-1 АНn

Hn-2 Hn-1 Hn

В соответствии со свойством 3) вероятности и теоремой умножения вероятностей

(2.13)

Пример. Из n экзаменационных билетов студент знает m («хорошие билеты» ). Что лучше: брать на экзамене билет первым или вторым?

Решение. Введем событие А – студент взял «хороший» билет.

Студент берет билет первым. В этом случае

1) Студент берет билет вторым. Введем две гипотезы:

Н1 первый студент взял «хороший» билет, Н2 = .

Вывод: безразлично, брать билет первым или вторым.

 

Формула Байеса (теорема гипотез)

В соответствии с теоремой умножения вероятностей

Р(АНi) = Р(Hi)·Р(А/Hi) = Р(A)·Р(Hi/А).

В это равенство подставим значение Р(А), вычисленное по формуле полной вероятности (2.13) и найдем Р(Hi/А).

Р(Нi/A) = (2.14)

Это следствие из теоремы умножения и формулы полной вероятности называется формулой Байеса или теоремой гипотез.

В формуле полной вероятности определяется вероятность события до его появления, т.е. до того, как произведен опыт, в котором оно могло появиться. Вероятности гипотез Р(Нi), входящие в формулу полной вероятности, называют априорными, т.е. «до опытными».

Пусть опыт произведен и его результат известен, т.е. мы знаем, произошло или не произошло событие А. Получившийся результат мог произойти при осуществлении какой-то одной гипотезы Нi. Дополнительная информация об исходе опыта перераспределяет вероятности гипотез. Эти перераспределенные вероятности гипотез Р(Нi/A) называют апостериорными, т.е. «после опытными».

Пример В одной из корзин 1 камешек и 4 кусочка хлеба, во второй – 4 камешка и 1 кусочек хлеба. Мышка наугад выбирает корзину, бежит к ней и вытаскивает кусочек хлеба - событие А (предполагается, что он затем вновь возвращается в корзину). Какова вероятность события А? Каковы вероятности того, что второй раз мышка побежит к первой корзине, ко второй корзине? Какова вероятность того, что она второй раз вытащит кусочек хлеба?

Рассмотрим гипотезы

Н1 – мышка бежит к первой корзине,

Н2 – мышка бежит ко второй корзине.

Р(Н1) =1/2 = Р(Н2) (априорные вероятности)

.

Р(Н1/A)

Р(Н2/A) (апостериорные вероятности).

При втором подходе

Мышка обучилась, второй раз она выберет первую корзину с большей вероятностью и добьется большего успеха.

Заметим, что это – один из основных принципов обучения кибернетических систем.

 

 

Лекция 3.

 

Случайные величины

 

Случайная величина – это величина (число), которая в результате опыта может принимать то или иное значение.

Более строго, случайная величина – это числовая функция случайного события.

Случайная величина называется дискретной, если множество ее значений конечно или счетно. Здесь - алгебра событий. Например, число очков на грани брошенной кости, число бросков монеты до появления герба – дискретные случайные величины.

Случайная величина называется непрерывной, если ее значения заполняют некоторый интервал, возможно, бесконечный. Здесь - сигма - алгебра событий. Например, расстояние от центра мишени при стрельбе, время до отказа прибора, ошибка измерения – непрерывные случайные величины.

 

Рассмотрим дискретную случайную величину, принимающую значения . Имеем полную группу (иначе, не все значения учтены) несовместных событий . Вероятности этих событий равны соответственно . Будем говорить, что дискретная случайная величина принимает значения с вероятностями .

Законом распределения дискретной случайнойвеличины называется любое соотношение, устанавливающее зависимость между ее значениями и вероятностями , с которыми эти значения достигаются.

Основные формы закона распределения дискретной случайной величины: ряд распределения – таблица

…..
…..

многоугольник распределения

p3

p2

p1, pn

x1 x2 x3 …xn

 

Можно задать закон распределения в виде аналитической зависимости, связывающей значения и вероятности .

Рассмотрим непрерывную случайную величину. Для непрерывной случайной величины , поэтому рассматривают события и вероятности этих событий.

Функцией распределения непрерывной случайной величины называется вероятность события . = .





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 365 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2260 - | 2182 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.