Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Собственные числа и собственные векторы матрицы




 

Определение 9.3. Вектор х называется собственным вектором матрицы А, если найдется такое число λ, что выполняется равенство: А х = λ х, то есть результатом применения к х линейного преобразования, задаваемого матрицей А, является умножение этого вектора на число λ. Само число λ называется собственным числом матрицы А.

Подставив в формулы (9.3) x`j = λxj, получим систему уравнений для определения координат собственного вектора:

.

Отсюда

. (9.5)

Эта линейная однородная система будет иметь нетривиальное решение только в случае, если ее главный определитель равен 0 (правило Крамера). Записав это условие в виде:

получим уравнение для определения собственных чисел λ, называемое характеристическим уравнением. Кратко его можно представить так:

| A - λE | = 0, (9.6)

поскольку в его левой части стоит определитель матрицы А-λЕ. Многочлен относительно λ | A - λE | называется характеристическим многочленом матрицы А.

 

Свойства характеристического многочлена:

1) Характеристический многочлен линейного преобразования не зависит от выбора базиса. Доказательство. (см. (9.4)), но следовательно, . Таким образом, не зависит от выбора базиса. Значит, и | A-λE | не изменяется при переходе к новому базису.

2) Если матрица А линейного преобразования является симметрической (т.е. аij=aji), то все корни характеристического уравнения (9.6) – действительные числа.

 

Свойства собственных чисел и собственных векторов:

1) Если выбрать базис из собственных векторов х1, х2, х3, соответствующих собственным значениям λ1, λ2, λ3 матрицы А, то в этом базисе линейное преобразование А имеет матрицу диагонального вида:

(9.7) Доказательство этого свойства следует из определения собственных векторов.

2) Если собственные значения преобразования А различны, то соответствующие им собственные векторы линейно независимы.

3) Если характеристический многочлен матрицы А имеет три различных корня, то в некотором базисе матрица А имеет диагональный вид.

 

Пример.

Найдем собственные числа и собственные векторы матрицы Составим характеристическое уравнение: (1- λ)(5 - λ)(1 - λ) + 6 - 9(5 - λ) - (1 - λ) - (1 - λ) = 0, λ ³ - 7 λ ² + 36 = 0, λ 1 = -2, λ 2 = 3, λ 3 = 6.

Найдем координаты собственных векторов, соответствующих каждому найденному значению λ. Из (9.5) следует, что если х (1) ={ x1,x2,x3 } – собственный вектор, соответствующий λ 1=-2, то

- совместная, но неопределенная система. Ее решение можно записать в виде х (1) ={ a,0,- a }, где а – любое число. В частности, если потребовать, чтобы | x (1) |=1, х (1) =

Подставив в систему (9.5) λ 2=3, получим систему для определения координат второго собственного вектора - x (2) ={ y1,y2,y3 }:

, откуда х (2) ={ b,-b,b } или, при условии | x (2) |=1, x (2) =

Для λ 3 = 6 найдем собственный вектор x (3) ={ z1, z2, z3 }:

, x (3) ={ c, 2c,c } или в нормированном варианте

х (3) = Можно заметить, что х (1) х (2) = ab – ab = 0, x (1) x (3) = ac – ac = 0, x (2) x (3) = bc - 2 bc + bc = 0. Таким образом, собственные векторы этой матрицы попарно ортогональны.

Лекция 10.

Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.

Определение 10.1. Квадратичной формой действительных переменных х1, х2,…,хn называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени.

Примеры квадратичных форм:

(n = 2),

(n = 3). (10.1)

Напомним данное в прошлой лекции определение симметрической матрицы:

Определение 10.2. Квадратная матрица называется симметрической, если , то есть если равны элементы матрицы, симметричные относительно главной диагонали.

Свойства собственных чисел и собственных векторов симметрической матрицы:

1) Все собственные числа симметрической матрицы действительные.

Доказательство (для n = 2).

Пусть матрица А имеет вид: . Составим характеристическое уравнение:

(10.2) Найдем дискриминант:

следовательно, уравнение имеет только действительные корни.

2) Собственные векторы симметрической матрицы ортогональны.

Доказательство (для n = 2).

Координаты собственных векторов и должны удовлетворять уравнениям:

Следовательно, их можно задать так:

. Скалярное произведение этих векторов имеет вид:

По теореме Виета из уравнения (10.2) получим, что Подставим эти соотношения в предыдущее равенство: Значит, .

 

Замечание. В примере, рассмотренном в лекции 9, были найдены собственные векторы симметрической матрицы и обращено внимание на то, что они оказались попарно ортогональными.

 

Определение 10.3. Матрицей квадратичной формы (10.1) называется симметрическая матрица . (10.3)

Таким образом, все собственные числа матрицы квадратичной формы действительны, а все собственные векторы ортогональны. Если все собственные числа различны, то из трех нормированных собственных векторов матрицы (10.3) можно построить базис в трехмерном пространстве. В этом базисе квадратичная форма будет иметь особый вид, не содержащий произведений переменных.

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 4646 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2346 - | 2305 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.