Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Угол между прямыми. Угол между прямой и плоскостью




 

Угол между прямыми в пространстве равен углу между их направляющими векторами. Поэтому, если две прямые заданы каноническими уравнениями вида

и косинус угла между ними можно найти по формуле:

. (8.14)

Условия параллельности и перпендикулярности прямых тоже сводятся к соответствующим условиям для их направляющих векторов:

- условие параллельности прямых, (8.15)

- условие перпендикулярности прямых. (8.16)

Угол φ между прямой, заданной каноническими уравнениями

и плоскостью, определяемой общим уравнением

Ax + By + Cz + D = 0, можно рассматривать как дополнительный к углу ψ между направляющим вектором прямой и нормалью к плоскости. Тогда

(8.17)

Условием параллельности прямой и плоскости является при этом условие перпендикулярности векторов n и а:

Al + Bm + Cn = 0, (8.18)

а условием перпендикулярности прямой и плоскости – условие параллельности этих векторов: A/l = B/m =C/n. (8.19)

Лекция 9.

Линейные преобразования координат. Собственные векторы и собственные числа матрицы, их свойства. Характеристический многочлен матрицы, его свойства.

Будем говорить, что на множестве векторов R задано преобразование А, если каждому вектору х R по некоторому правилу поставлен в соответствие вектор А х R.

 

Определение 9.1. Преобразование А называется линейным, если для любых векторов х и у и для любого действительного числа λ выполняются равенства:

А( х + у)= А х + А у, А(λ х) = λ А х. (9.1)

 

Определение 9.2. Линейное преобразование называется тождественным, если оно преобразует любой вектор х в самого себя.

Тождественное преобразование обозначается Е: Е х = х.

Рассмотрим трехмерное пространство с базисом е1, е2, е3, в котором задано линейное преобразование А. Применив его к базисным векторам, мы получим векторы А е1, А е2, А е3, принадлежащие этому трехмерному пространству. Следовательно, каждый из них можно единственным образом разложить по векторам базиса:

А е1 = а11 е1 + а21 е2 31 е3,

А е2 = а12 е1 + а22 е2 + а32 е3, (9.2)

А е3 = а13 е1 + а23 е2 + а33 е3.

Матрица называется матрицей линейного преобразования А в базисе е1, е2, е3 . Столбцы этой матрицы составлены из коэффициентов в формулах (9.2) преобразования базиса.

 

Замечание. Очевидно, что матрицей тождественного преобразования является единичная матрица Е.

 

Для произвольного вектора х 1 е1 + х2 е2 + х3 е3 результатом применения к нему линейного преобразования А будет вектор А х, который можно разложить по векторам того же базиса: А х =х`1 е1 + х`2 е2 + х`3 е3, где координаты x`i можно найти по формулам:

х`1 = a11x1 + a12x2 + a13x3,

x`2 = a21x1 + a22x2 + a23x3, (9.3)

x`3 = a31x1 + a32x2 + a33x3.

Коэффициенты в формулах этого линейного преобразования являются элементами строк матрицы А.

 

Преобразование матрицы линейного преобразования





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 587 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2431 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.