Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Поверхности вращения второго порядка




Определение 1.5. Поверхностью вращения второго порядка называется поверхность, образованная вращением линии второго порядка вокруг её оси (рисунки 1.8–1.12).

1) Эллипсоид вращения    
Рисунок 1.8

При вращении эллипса , х = 0 вокруг оси Оz получим поверхность, которая называется эллипсоидом вращения. При а = с получаем сферу х 2 + у 2 + z 2 = a 2.

2) Однополостный гиперболоид    
       
   
Рисунок 1.9
 
 
Рисунок 1.9

 

 


Однополостный гиперболоидобразуется при вращении гиперболы , х = 0 вокруг оси Оz.

3) Двуполостный гиперболоид
Рисунок 1.10

 

Двуполостный гиперболоидобразуется при вращении гиперболы , х = 0 вокруг оси Оz.

4) Конус вращения
Рисунок 1.11
 

 

Конус вращенияобразуется при вращении прямых , х = 0 вокруг оси Оz.

5) Параболоид вращения
 
 


х 2 + у 2 = 2 рz или

Параболоид вращенияполучается вра-щением параболы у 2 = 2 рz, х = 0 вокруг оси Оz

       

Поверхности второго порядка

 
 

1. Трёхосный эллипсоид (рисунок 1.13).

Рисунок 1.13
2. Однополостный гиперболоид .

 

3. Двуполостный гиперболоид .

 

4. Конус второго порядка .

5. Эллиптический параболоид .

 

 
 

6. Гиперболический параболоид (рисунок 1.14).

 
 
Рисунок 1.14

 


Вопросы для самоконтроля

1. Как проверить, лежит ли данная точка на поверхности, заданной уравнением?

2. Всегда ли два уравнения с тремя переменными определяют некоторую линию в пространстве? Приведите примеры.

3. Какое множество точек представляет собой уравнение с двумя переменными, если его рассматривать в пространстве?

4. При каких условиях общее уравнение второй степени с тремя переменными определяет сферу? Как найти ее центр и радиус?

5. Как записать уравнение поверхности вращения, полученной при вращении плоской линии f(x, y) = 0 вокруг оси Ox? Приведите примеры.

6. Каков характерный признак, отличающий уравнение плоскости в декартовых координатах от уравнения других поверхностей?

7. Как будет располагаться плоскость относительно осей координат, если в ее уравнении отсутствуют те или иные члены?

8. Как определить направляющий вектор прямой, если она задана общим уравнением?

9. Как определяется угол между двумя плоскостями, между двумя прямыми, между прямой и плоскостью?

10. Каковы условия перпендикулярности и параллельности двух плоскостей, двух прямых, прямой и плоскости?

11. Как найти точку пересечения прямой и плоскости?

12. При каких условиях данная прямая лежит в данной плоскости?

13. Как найти расстояние от точки до плоскости?

14. Напишите виды и уравнения цилиндров второго порядка.

15. Напишите виды и уравнения поверхностей вращения второго порядка.

16. Напишите виды и уравнения поверхностей второго порядка.

 


Линейные пространства





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 2351 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2489 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.