Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Алгоритм метода неопределенных коэффициентов




· Во-первых, раскладываем знаменатель на множители.

Здесь все методы хороши – от вынесения за скобки, применения формул сокращенного умножения, до подбора корня и последующего деления столбиком (при знаменателе в виде многочлена с рациональными коэффициентами степени выше второй). Об этом подробнее в разделе теории – разложение многочлена на множители.

В нашем примере все просто – выносим х за скобки.

· Во-вторых, раскладываемую дробь представляем в виде суммы простейших дробей с неопределенными коэффициентами.

Здесь стоит рассмотреть виды выражений, которые могут быть у Вас в знаменателе.

o Если в знаменателе что-то вроде этого , количество линейных множителей роли не играет, (будь их 2 или 22), то дробь представится в виде суммы простейших дробей первого типа:

a, b, c и d - числа, A, B, C и D - неопределенные коэффициенты.

o Если в знаменателе что-то вроде этого количество множителей роли не играет и не играют роли степени этих множителей (хоть 221ая степень), то дробь представится в виде суммы простейших дробей первого и второго типов:

a, b, c - числа, - неопределенные коэффициенты.

Возьмите на заметку: какая степень – столько и слагаемых.

o Если в знаменателе что-то вроде этого количество квадратичных выражений роли не играет, то дробь представится в виде суммы простейших дробей третьего типа:

p, q, r и s - числа, P, Q, R и S - неопределенные коэффициенты.

o Если в знаменателе что-то вроде этого количество множителей роли не играет и не играют роли степени этих множителей, то дробь представится в виде суммы простейших дробей третьего и четвертого типов:

p, q, r и s - числа, - неопределенные коэффициенты.

ОБЫЧНО ВСТРЕЧАЕТСЯ КОМБИНАЦИЯ ЭТИХ ВАРИАНТОВ (как правило, довольно простая).

o Если собрать все в кучу ,то дробь представится в виде суммы простейших дробей всех четырех типов:

Хватит теории, на практике все равно понятнее.

Пришло время вернуться к примеру. Дробь раскладывается в сумму простейших дробей первого и третьего типов с неопределенными коэффициентами A, B и C.

· В-третьих, приводим полученную сумму простейших дробей с неопределенными коэффициентами к общему знаменателю и группируем в числителе слагаемые при одинаковых степенях х.

То есть, пришли к равенству:

При x отличных от нуля это равенство сводится к равенству двух многочленов

А два многочлена являются равными тогда и только тогда, когда коэффициенты при одинаковых степенях совпадают.

· В-четвертых, приравниваем коэффициенты при одинаковых степенях х.

При этом получаем систему линейных алгебраических уравнений с неопределенными коэффициентами в качестве неизвестных:

· В-пятых, решаем полученную систему уравнений любым способом (при необходимости смотрите статью решение систем линейных алгебраических уравнений, методы решения, примеры), который нравится Вам, находим неопределенные коэффициенты.

· В-шестых, записываем ответ.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1017 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2274 - | 2125 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.129 с.