Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Типові динамічні ланки безперервних САУ та їх характеристики




 

Чим докладніше математична модель САК, тим вище порядок n її диференціального рівняння. Передавальні функції систем високого порядку (зазвичай n > 4) виявляються громіздкими і незручними для аналізу. Щоб вийти з цього положення, передавальну функцію представляють у вигляді перемноження простих співмножників, порядок яких не перевищує два. Такі співмножники називають типовими ланками.

 

Безінерційна ланка

 

Безінерційна (статична) ланка є найпростішою серед всіх типових ланок. Вона передає сигнал з входу на вихід миттєво, без спотворення його форми. У ланці може відбуватися тільки посилення або послаблення вхідного сигналу.

Зв'язок між миттєвими значеннями вхідної величини x(t) і вихідної величини у(t) описується рівнянням алгебри:

y(t) = kx(t).

Передавальні властивості ланки визначаються лише одним параметром - коефіцієнтом передачі k.

Перехідна функція Імпульсна перехідна функція

 

h(t) = k1(t) w(t) = kd(t)

Рівняння ланки в операційній формі Y(p) = kX(p)

Передаточна функція

ω
φ(ω)
A(w) = |W(jw)| = k
ω=0…∞
P(ω)
jQ(ω)
j(w) = arctg(0/R) = 0 W(jw) = k

A(ω)
ω
 

 

 

20lgk
ω
L(ω)

 


 

K
X(p)
Y(p)

 

 

L(w) = 20 lg A(w) = 20 lg k

АЧХ і ФЧХ безінерційної ланки показують, що сигнали будь-якої частоти (0; +¥) проходять через ланку з однаковим відношенням амплітуд вихідної і вхідної величини, рівним k і не мають між собою фазового зсуву.

Прикладами безінерційних ланок є редуктор, датчик потенціометра кутового переміщення, тахогенератор, який використовують як датчик частоти обертання і т. д. Пропорційними ланками моделюються підсилювачі, редуктори, дільники напруги і т. п.

Слід зазначити, що поняття безінерційної ланки є продуктом математичної ідеалізації. Насправді всі реальні конструктивні елементи САК володіють деякою інерційністю, оскільки передача енергії з входу на вихід елементу не може здійснюватися миттєво. Проте, якщо інерційність того або іншого елементу на два-три порядки менша, ніж у решти елементів даної системи, то його вважають безінерційною ланкою.

 

5.2. Інерційна ланка першого порядку (аперіодична ланка)

 

Фізично аперіодична ланка містить один елемент, що накопичує енергію, а також один або декілька елементів здатних її розсіювати.

Диференціальне рівняння:

k – коефіцієнт передачі, характеризує властивості ланки в статичному режимі.

Т – постійна часу, характеризує інерційність ланки

 

Коефіцієнт посилення ланки визначає рівень, до якого прагне перехідна характеристика з часом. Дотична, проведена на початку координат до перехідної характеристики, перетинає цей рівень у момент часу, рівний постійної часу аперіодичної ланки Т. Ці властивості аперіодичної ланки, а також те, що перехідний процес закінчується приблизно за час, що дорівнює 3Т, дозволяє визначати параметри ланки (коефіцієнт посилення і постійну часу) по його експериментальній перехідній характеристиці.

Рівняння ланки в операторній формі (Tp+1)Y(p) = kX(p)

Передаточна функція

АФЧХ: АЧХ:

 
k/2
ω=∞
jQ(ω)
ω=1/T
ω=0
P(ω)
k

 

 

 

Аналізуючи графік функції , видно, що гармонійні сигнали малої частоти () пропускаються ланкою добре - з відношенням амплітуд вихідної і вхідної величин, близьким до передавального коефіцієнта k. Сигнали великої частоти () погано пропускаються ланкою: відношення амплітуд істотно менше коефіцієнта k. Чим більше постійна часу Т, тобто чим більше інерційність ланки, тим менше АЧХ витягнута уздовж осі частот, або, як прийнято говорити в ТАУ, тим вужче смуга пропускання частот. Таким чином, інерційна ланка першого порядку по своїх частотних властивостях є фільтром низької частоти.

 

 

ФЧХ:
ВЧХ:

 

L(ω)
20lgk
lgωc
-20дБ/дek
lgω

 

МЧХ:
ЛАЧХ:


У практичних розрахунках використовують наближену або асимптотичну характеристику , яка є ламана у вигляді двох асимптот.

Першу асимптоту (низькочастотна) маємо при низьких частотах, коли величиною у виразі можна нехтувати і прийняти, що . Низькочастотна асимптота від частоти не залежить і є прямою, паралельною осі частот і віддалену від неї на відстані .

Друга асимптота (високочастотна) замінює точну характеристику при великих частотах, коли , і одиницю під коренем у виразі можна не враховувати. Вираз для цієї асимптоти має вигляд: .

Ця асимптота залежить від частоти. У логарифмічній системі координат вона є прямою, що має негативний нахил і що проходить через точку з координатами , . Приріст високочастотної асимптоти, що приходить на одну декаду, рівний -20 дб.

Значення сполучної частоти при якій перетинаються обидві асимптоти, знайдемо з умови , звідки .

Інерційними ланками першого порядку є конструктивні елементи, які можуть накопичувати і передавати енергію або речовину. У електричних елементах накопичувачем енергії електричного поля служить конденсатор, а магнітного поля - індуктивність. У механічних елементах потенційна енергія накопичується в пружинах і інших пружних елементах, а кінетична - в рухомих масах.

 

 

k = 1 T = RC k = 1 T = L/R

Інтегруючі ланки

 

Розрізняють два види інтегруючих ланок: ідеальні і реальні. Загальною особливістю інтегруючих ланок є пропорційність похідної вихідної величини миттєвому значенню вхідної величини. Причому, у ідеальної інтегруючої ланки пропорційність існує у будь-який момент часу після подачі стрибкоподібного сигналу, а у реального - тільки після завершення перехідного процесу.

(1) Ідеальна інтегруюча ланка: , , T – постійна часу ідеального інтегратора.

(2) Реальна інтегруюча ланка:

- ПФ ідеальне: , реальне

ідеальне (1)

реальне (2)

Перехідна функція ідеального інтегратора лінійно зростає з часом. Швидкість росту зворотно пропорційна постійною часу інтегратора. Вихідний сигнал інтегратора досягає рівня стрибкоподібної функції за час, що дорівнює постійній часу Т інтегратора.

 

(1) (2)

(1) (1)

(2) (2)

(1) (2)

 

Інтегруючі властивості властиві всім об'єктам керування, в яких відбувається накопичення речовини або енергії без її одночасної віддачі в навколишнє середовище. Класичним прикладом об'єкту з інтегруючими властивостями є резервуар з рідиною (рис. 3.13, а), якщо в якості вхідноі змінної розглядати подачу рідини Q (м3/с), а вихідної - рівень рідини h (м).

Інтегруючими ланками є також різні виконавчі двигуни і механізми - пристрої, які переміщають регулюючі органи (шибери, заслінки, вентилі і т. д.).

Загальні властивості і особливості інтегруючих ланок:

1.Після подачі стрибкоподібного вхідного впливу вихідна змінна у(t) необмежено зростає і після закінчення перехідного процесу змінюється по лінійному закону .

При знятті вхідного впливу вихідна змінна зберігає досягнуте значення, тому інтегруючі ланки можна використовувати як елементи, що запам'ятовують (елементів з пам'яттю).

2. У передавальну функцію обов'язково входить співмножник 1/p, тому , а .

3. Інтегруючі ланки, є фільтрами низької частоти; у режимі гармонійного коливання вони вносять від’ємні фазові зсуви.

 

 

Диференцюючі ланки

Бувають ідеальними (безінерційними) і реальними (інерційними). Миттєве значення вихідної величини ідеальної диференціальної ланки пропорційне в кожен момент часу першої похідної від вхідної величини:

W(p) = kp;

T
h(t)

1)

1) 1)

φ(ω)
900
450
ω
ωc=1/T
 
 
 
2) 2)

 

1)

2)

 

Загальні властивості і особливості диференцюючих ланок:

1. При подачі на вхід ланки стрибкоподібного впливу на його виході виникає великий короткочасний імпульс, а потім після закінчення перехідного процесу вихідна змінна стає рівною нулю. Якщо вхідний сигнал не змінюється в часі, то вихідний дорівнює нулю.

2. У передавальну функцію завжди входить співмножник p, тому W(p)|p=0=0, і диференцюючі ланки в статиці не передають вхідні сигнали.

3. Диференцюючі ланки є фільтрами високої частоти, тобто добре пропускають високочастотні сигнали і погано - низькочастотні.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1402 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2279 - | 2133 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.015 с.