Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Проверка гипотезы о значимости выборочного коэффициента линейной корреляции




Это ответ на вопрос: существует ли вообще эта связь.

Эмпирический коэффициент корреляции, как и любой другой выборочный показатель, служит оценкой своего ге нерального параметра. Выборочный коэффициент линейной корреляции rв - величина случайная, так как он вычисляется по значениям переменных, случайно попавшим в выборку из генеральной совокупности, а значит, как и любая случайная величина, имеет ошибку тr.

Чтобы выяснить, находятся ли случайные величины X и Y генеральной совокупности в линейной корреляционной зависимости, надо проверить значимость rв. Для этого проверяют нулевую гипотезу о равенстве нулю коэффициента корреляции генеральной совокупности H 0: rген = 0, то есть линейная корреляционная связь между признаками X и Y случайна. Выдвигается альтернативная гипотеза H 1: rген 0, то есть эта линейная корреляционная связь имеется. Задается уровень значимости, например, α ≤ 0,05.

Критерием для проверки нулевой гипотезы является отношение выборочного коэффициента корреляции к своей ошибке:

где тr - ошибка коэффициента корреляции.

Если объем выборки п < 100, то ;

если объем выборки п > 100, то .

Число степеней свободы для проверки критерия равно f = п - 2. Гипотезу проверяют по таблицам распределения Стьюдента в соответствии с выбранным уровнем значимости.

По таблице критических точек распределения Стьюдента находим tкрит (α, f), определенное на уровне значимости α ≤ 0,05 при числе степеней свободы f = п - 2, где n - объем двумерной выборки.

Если tнабл > tкрит => H 1- отвергают нулевую гипотезу и принимают альтернативную: rген 0, имеется линейная корреляционная связь между признаками.

Если tнабл < tкрит - то нет оснований отвергать нулевую гипотезу, а rв статистически незначим. Эта связь случайна.

 

Проверить значимость коэффициента корреляции r = 0,74 между переменными X и Y для выборки объема n = 50.

Решение:

Проверяется нулевая гипотеза H 0 об отсутствии линейной корреляционной связи между переменными X и Y в генеральной совокупности H 0: rген = 0.

При справедливости этой гипотезы , где ошибка коэффициента корреляции и имеют распределение Стьюдента сf = n- 2 степенями свободы.

Рассчитаем: .

По таблицам находим табличное значение t -критерия Стьюдента, определенное на уровне значимости α ≤ 0,05 и при числе степеней свободы f = 50 - 2 = 48, tкрит (α ≤ 0,05; 48) = 2,02.

Поскольку tнабл > tкрит, 7,62 > 2,02, коэффициент корреляции значимо отличается от нуля.

Причем это справедливо и для уровня значимости:

α ≤ 0,001 (t = 3,55).

 

По выборке объема п = 122, извлеченной из нормальной двумерной совокупности (X, Y), найден выборочный коэффициент линейной корреляции r = 0,4. При уровне значимости α ≤ 0,05 проверить нулевую гипотезу H 0, которая заключается в том, что связь между признаками случайна.

Решение:

Сравниваем: tнабл > tкрит, f), 5,24 > 1,98 => H 1 – отвергается нулевая гипотеза.

Вывод: имеется умеренная линейная корреляционная связь между признаками: r = 0,4 (α ≤ 0,05).

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 832 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2261 - | 2183 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.