Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Точечная оценка параметров генеральной совокупности




Точечная оценка – это оценка, которая определяется одним числом. И это число определяется по выборке. Это функция результатов выборки, и она является точечной оценкой генерального параметра, т. е. принимает только одно значение.

Качество оценки устанавливается по трем свойствам: быть состоятельной, эффективной и несмещенной.

Точечная оценка называется состоятельной, если при увеличении объема выборки выборочная характеристика стремится к соответствующей характеристике генеральной совокупности.

Точечная оценка называется эффективной, если она имеет наименьшую дисперсию выборочного распределения по сравнению с другими аналогичными оценками.

Точечную оценку называют несмещенной, если ее математическое ожидание равно оценивающему параметру при любом объеме выборки.

Несмещенной оценкой генеральной средней (математического ожидания) служит выборочная средняя :

где - варианты выборки; - частота встречаемости вариант ; n - объем выборки.

Выборочная средняя является несмещенной оценкой генеральной средней, так как ,т.е. она эквивалентна истинной средней в генеральной совокупности (популяции).

Выборочная дисперсия не обладает свойством несмещенности. Это смещенная оценка генеральной дисперсии .

- это и означает, что выборочная дисперсия является смещенной оценкой

На практике используют исправленную выборочную дисперсию , которая является несмещенной оценкой дисперсии генеральной совокупности:

Кроме того, в расчетах используют S - исправленное среднее квадратическое отклонение, называемое стандартным отклонением в выборке и ошибку выборочной средней

(стандартную ошибку средней) :

которая отражает точность оценки.

Стандартная ошибка уменьшится, т. е. оценка станет более точной, если объем выборки n увеличится и данные имеют небольшое рассеяние S.

Рассмотрим разницу между S - стандартным отклонением в выборке и - стандартной ошибкой среднего.

 

На первый взгляд, они очень схожи, но их используют в разных целях. Среднее квадратическое отклонение S отражает вариабельность в значениях данных, и его указывают, если надо пояснить изменчивость в наборе данных, разброс данных.

Ошибка выборочной средней характеризует точность выборочного среднего и должна быть указана, если интерес представляет среднее значение выборки.

 

Из генеральной совокупности извлечена выборка объема n=50.

       
       

 

Найти несмещенную оценку генеральной средней.

Решение:

По выборке объема 30 найдена смещенная оценка = 3 генеральной дисперсии. Найти несмещенную оценку дисперсии генеральной совокупности.

Решение:

Эта несмещенная оценка равна исправленной дисперсии:

Найти несмещенную оценку генеральной средней, дисперсии генеральной совокупности и стандартное отклонение по выборке объема 12, описывающую продолжительность в секундах физической нагрузки до развития приступа стенокардии:

289,203,359,243,232,210,251,251,246,224,239,220,211.

Решение:

 

Варианты заданий

№ 13.1. При исследовании клинической оценки тяжести серповидноклеточной анемии была получена выборка объема 33.

0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 3; 3; 3; 3; 4; 4; 5;

5;5;5;6;7;9;10;11.

Найдите среднюю, среднее квадртическое отклонение и

медиану. Можно ли считать, что выборка извлечена из

совокупности с нормальным распределением?

№ 13.2. Исследуя продолжительность (в секундах) физической нагрузки до развития приступа стенокардии у 12 человек с ишемической болезнью сердца, получили следующие данные:

289;203; 359; 243; 232; 210; 215; 246; 224; 239; 220; 211. Найдите среднюю, среднее квадратическое отклонение, медиану. Можно ли считать, что данная выборка извлечена из совокупности с нормальным распределением?

№ 13.3. Найдите среднее число очков, выпадающих при бросании игральной кости. Опишите это распределение. Может ли оно быть нормальным?





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1010 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2281 - | 2079 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.