Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Деякі поняття і визначення булевої алгебри




Розділ 1. МАТЕМАТИЧНІ ОСНОВИ СИНТЕЗУ ЛОГІЧНИХ СХЕМ

 

Для зображення інформації в комп'ютерах використовується двійкова система числення. Таким чином, всі операції, які виконує комп'ютер, проводяться на множині {0,1}. Ці перетворення зручно формально зображати за допомогою апарата двійкової логіки, який буй розроблений англійським математиком Джорджем Булем (1815-1864). Ця алгебраїчна структура є алгеброю і називається булевою алгеброю. Булева алгебра використовується при розв'язанні різних задач обробки інформації, при роботі з базами даних, в логічному програмуванні, при проектуванні інтелектуальних систем, для конструювання та аналізу роботи комп'ютерів та інших електронних пристроїв, У цьому розділі розглянуто основні вла­стивості булевих функцій з аргументами з множини {0, 1} і способи зображення булевих функцій у вигляді виразів булевої алгебри. Булева функція може мати велику кількість змінних і знаків операцій, у той час, як може існувати інше, еквівалентне зображення даної функції, що має меншу кіль­кість змінних і операцій. У наступних розділах буде описано методи одержання виразів з мінімальною кількістю змінних і знаків операцій.

Деякі поняття і визначення булевої алгебри

Булева (логічна) змінна – це така змінна, яка може приймати лише два значення: 0 і 1­­.

Логічні змінні, як і змінні звичайної алгебри, позначають буквами латинського алфавіту або якою-небудь буквою з різними індексами, наприклад, x, y, z, .

Булевою (логічною або перемикальною) функцією називається функція , яка, як і її n аргументів, може приймати лише два значення: 0 і 1.

Виявляється, що з допомогою булевих функцій можна описувати дію різного класу схем цифрової електроніки, а також правила функціонування таких схем. Такого типу схеми називають комбінаційними, оскільки сигнал на їх виході (0 або 1) визначається комбінацією сигналів (0 або 1) на їх входах. У випадку, коли булева функція використовується для опису перемикальної (контактної) схеми, її називають перемикальною.

Перемикальна схема – це пристрій із перемикачів (контактів) і провідників, які зв’язують два і більше полюсів (входів і виходів), частина з яких вхідні, а частина – вихідні.

Надалі булеві функції від n аргументів часто будемо записувати у вигляді . Це пов’язано із поданням n -розрядних двійкових чисел у вигляді полінома n -го степеня. Наприклад, двійкове число 101101 можна подати у вигляді полінома: . У цьому випадку степінь двійки відповідає номеру змінної.

Функція , яка залежить від n аргументів, називається n - місною і є повністю заданою (повністю визначеною), якщо вказані її значення для всіх булевих (двійкових) наборів значень аргументів.

Двійковим набором , де , називається сукупність значень аргументів булевої функції .

Кажуть, що функція істотно не залежить від змінної , якщо .

У цьому випадку змінну називають неістотною змінною, у протилежному випадку – істотною.

Булеві функції, які істотно не залежать від деяких своїх змінних називаються виродженими, а ті, які істотно залежать від усіх своїх змінних – невиродженими.

Булеві функції, які невизначені на деяких наборах називаються неповністю визначеними функціями.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 692 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.