Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тангенциальная составляющая ускорения 6 страница




Рассмотрим два сечения (на уровне h 1 свободной поверхности жидкости в сосуде и на уровне h 2 выхода ее из отверстия) и напишем уравнение Бернулли:

Так как давления р 1 и р 2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. р 1 2, то уравнение будет иметь вид

Из уравнения неразрывности (29.1) следует, что v 2 /v 1 =S 1 /S 2, где S 1 и S 2 площади поперечных сечений сосуда и отверстия. Если S 1 >>S 2, то членом v /2 можно пренебречь и

Это выражение получило название формулы Торричелли.*

* Э. Торричелли (1608—1647) — итальянский физик и математик.

 

§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей

Вязкость (внутреннее трение) — это свойство реальных жидкостей оказывать сопротив­ление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявля­ется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медлен­нее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Сила внутреннего трения F тем больше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою. На рисунке представлены два слоя, отстоящие друг от друга на расстоянии D x и движущиеся со скоростями v1 и v2. При этом v1—v2=Dv. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направле­нию движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения

(31.1)

где коэффициент пропорциональности m, зависящий от природы жидкости, называется динамической вязкостью (или просто вязкостью).

Единица вязкости — паскаль-секунда (Па×с): 1 Па×с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения 1 Н на 1 м2 поверхности касания слоев (1 Па×с= 1 Н×с/м2).

Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей h с увеличе­нием температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18—40°С падает в четыре раза. Российский физик П. Л. Капица (1894—1984; Нобелевская пре­мия 1978 г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверх­текучее состояние, в котором его вязкость равна нулю.

Существует два режима течения жидкостей. Течение называется ламинарным (слоис­тым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скоро­сти последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.

При турбулентном течении частицы жидкости приобретают составляющие скоро­стей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверх­ности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличают­ся. Из-за большого градиента скоростей у поверхности трубы обычно происходит образование вихрей.

Профиль усредненной скорости при турбулентном течении в трубах (рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения. Характер течения зависит от безразмерной величины, называемой числом Рейнольдса (О. Рейнольдс (1842—1912) — английский ученый):

где n = h/p— кинематическая вязкость; р— плотность жидкости; < v >—средняя по сечению трубы скорость жидкости; d — характерный линейный размер, например диаметр трубы.

При малых значениях числа Рейнольдса наблюдается ламинарное тече­ние, переход от ламинарного течения к турбулентному происходит в области а при (для гладких труб) течение—турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.

§ 32. Методы определения вязкости

1. Метод Стокса. * Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

* Дж. Стокс (1819—1903) — английский физик и математик.

 

На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести Р= 4/3 pr 3 rg (r — плотность шарика), сила Архимеда Р= 4/3 pr 3 r'g (r' — пло­тность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: F= 6 phrv, где r — радиус шарика, v — его скорость. При равномерном движении шарика

откуда

Измерив скорость равномерного движения шарика, можно определить вязкость жид­кости (газа).

2. Метод Пуазейля.* Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной l. В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной d r (рис. 54). Сила внутреннего трения (см. (31.1)), действующая на боковую поверхность этого слоя,

где d S — боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.

* Ж. Пуазейль (1799—1868) — французский физиолог и физик.

 

Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получаем

 

Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы (см. также рис. 53).

За время t из трубы вытечет жидкость, объем которой

откуда вязкость

§ 33. Движение тел в жидкостях и газах

Одной из важнейших задач аэро- и гидродинамики является исследование движения твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда действует на движущееся тело. Эта проблема приобрела особенно большое значение в связи с бурным развитием авиации и увеличением скорости движения морских судов.

На тело, движущееся в жидкости или газе, действуют две силы (равнодействующую их обозначим R), одна из которых (R x) направлена в сторону, противоположную движению тела (в сторону потока), — лобовое сопротивление, а вторая (R y) перпен­дикулярна этому направлению — подъемная сила (рис. 55).

Если тело симметрично и его ось симметрии совпадает с направлением скорости, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать, что в идеальной жидкости равномерное движение происходит без лобового сопротивления. Если рассмотреть движение цилиндра в такой жидкости (рис. 56), то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. с. результирующая сила давления на поверхность цилиндра будет равна нулю.

Иначе обстоит дело при движении тел в вязкой жидкости (особенно при увеличении скорости обтекания). Вследствие вязкости среды в области, прилегающей к поверх­ности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы (нет плавно утончающейся хвостовой части), то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направ­ленное противоположно набегающему потоку. Оторвавшийся пограничный слой, сле­дуя за этим течением, образует вихри, вращающиеся в противоположные стороны (рис. 57).

Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом сопротивления Сx, определя­емым экспериментально:

(33.1)

где r — плотность среды; v — скорость движения тела; S — наибольшее поперечное сечение тела.

Составляющую Rx можно значительно уменьшить, подобрав тело такой формы, которая не способствует образованию завихрения.

Подъемная сила может быть определена формулой, аналогичной (33.1):

где Су безразмерный коэффициент подъемной силы.

Для крыла самолета требуется большая подъемная сила при малом лобовом сопротивлении (это условие выполняется при малых углах атаки a (угол к потоку); см. рис. 55). Крыло тем лучше удовлетворяет этому условию, чем больше величина К=Суx называемая качеством крыла. Большие заслуги в конструировании требу­емого профиля крыла и изучении влияния геометрической формы тела на коэффициент подъемной силы принадлежат «отцу русской авиации» Н. Е. Жуковскому (1847—1921).

Задачи

6.1. Полый железный шар (r = 7,87 г/см3) весит в воздухе 5 Н, а в воде (r ' = 1 г/см3) — 3 Н. Пренебрегая выталкивающей силой воздуха, определить объем внутренней полости шара. [139 см3]

6.2. Бак цилиндрической формы площадью основания S = 1 м2 и объемом V = 3 м3 заполнен водой. Пренебрегая вязкостью воды, определить время t, необходимое для опусто­шения бака, если на дне бака образовалось круглое отверстие площадью S 1 =10 см2.

6.3. Сопло фонтана, дающего вертикальную струю высотой H = 5 м, имеет форму усеченного конуса, сужающегося вверх. Диаметр нижнего сечения d 1 = 6 см, верхнего — d 2 = 2 см. Вы­сота сопла h = 1 м. Пренебрегая сопротивлением воздуха в струе и сопротивлением в сопле, определить: 1) расход воды в 1 с, подаваемой фонтаном; 2) разность D р давления в нижнем сечении и атмосферного давления. Плотность воды r =1 г/см3. [1) d 2/4 = 3,1 х 10-3 м3/с; 2) D p = pgh + pgH (1– d / d =58,3 кПа]

6.4. На горизонтальной поверхности стоит цилиндрический сосуд, в боковой поверхности которого имеется отверстие. Поперечное сечение отверстия значительно меньше поперечного сечения самого сосуда. Отверстие расположено на расстоянии h 1 = 64 см ниже уровня воды в сосуде, который поддерживается постоянным, и на расстоянии h 2 = 25 см от дна сосуда. Пренебрегая вязкостью воды, определить, на каком расстоянии по горизонтали от сосуда падает на поверхность струя, вытекающая из отверстия. [80 см]

6.5. В широком сосуде, наполненном глицерином (плотность r =1,2 г/см3), падает с устано­вившейся скоростью 5 см/с стеклянный шарик (r' = 2,7 г/см3) диаметром 1 мм. Определить динамическую вязкость глицерина. [1,6 Па×с]

6.6. В боковую поверхность цилиндрического сосуда, установленного на столе, вставлен на высоте h 1 = 5 см от его дна капилляр внутренним диаметром d = 2 мм и длиной l = 1 см. В сосуде поддерживается постоянный уровеньмашинного масла (плотность r = 0,9 г/см3 и динамичес­кая вязкость h = 0,1 Па×с) на высоте h 2 = 80 см выше капилляра. Определить, на каком расстоянии по горизонтали от конца капилляра падает на поверхность стола струя масла, вытекающая из отверстия.

6.7. Определить наибольшую скорость, которую может приобрести свободно падающий в воз­духе (r =1,29 г/см3) стальной шарик (r ' = 9 г/см3) массой m = 20 г. Коэффициент Сх принять равным 0,5. [94 см/с]

Глава 7 Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

В классической механике справедлив механический принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных систе­мах отсчета.

Для его доказательства рассмотрим две системы отсчета: инерциальную систему K (с координатами х, у, z), которую условно будем считать неподвижной, и систему K' (с координатами x', у', z'), движущуюся относительно K равномерно и прямолинейно со скоростью u (u=const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадают. Пусть в произвольный момент времени t расположение этих систем друг относительно друга имеет вид, изображенный на рис. 58. Скорость u направлена вдоль OO', радиус-вектор, проведенный из О в О', r 0 = u t.

Найдем связь между координатами произвольной точки А в обеих системах. Из рис. 58 видно, что

(34.1)

Уравнение (34.1) можно записать в проекциях на оси координат:

(34.2)

Уравнения (34.1) и (34.2) носят название преобразований координат Галилея.

В частном случае, когда система К' движется со скоростью т вдоль положительного направления оси х системы К (в начальный момент времени оси координат совпадают), преобразования координат Галилея имеют вид

В классической механике предполагается, что ход времени не зависит от относи­тельного движения систем отсчета, т. е. к преобразованиям (34.2) можно добавить еще одно уравнение:

(34.3)

Записанные соотношения справедливы лишь в случае классической механики (u << с), а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца* (§ 36).

* Х. Лоренц (1853—1928) — нидерландский физик-теоретик.

 

Продифференцировав выражение (34.1) по времени (с учетом (34.3)), получим уравнение

(34.4)

которое представляет собой правило сложения скоростей в классической механике.

Ускорение в системе отсчета К

Таким образом, ускорение точки А в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково:

(34.5)

Следовательно, если на точку А другие тела не действуют (а=0), то, согласно (34.5), и а'=0, т. е. система К' является инерциальной (точка движется относительно нее равномерно и прямолинейно или покоится).

Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. являются инвариантными по отношению к преобразованиям координат. Галилей обратил внимание, что никакими механичес­кими опытами, проведенными в данной инерциальной системе отсчета, нельзя устано­вить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно.

§ 35. Постулаты специальной (частной) теории относительности

Классическая механика Ньютона прекрасно описывает движение макротел, движущих­ся с малыми скоростями (v << с). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчи­няется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скоро­сти их движения. Американский физик А. Майкельсон (1852—1913) в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838—1923) пытался обнаружить движение Земли относительно эфира (эфирный ветер) — опыт Майкельсона — Морли, применяя интерферометр, названный впоследствии интерферометром Майкельсона (см. § 175). Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показы­вали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики.

Одновременно было показано противоречие между классической теорией и уравне­ниями (см. § 139) Дж. К. Максвелла (английский физик, 1831—1879), лежащими в ос­нове понимания светакак электромагнитной волны.

Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (v << с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.

Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и вре­мени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется также релятивистской теорией, а специфические явления, описываемые этой теорией, — релятивистскими эффектами.

В основе специальной теории относительности лежат постулаты Эйнштейна, сфор­мулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптичес­кие), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной систе­мы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа от­носительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы от­счета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) вовсех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштейна, постоянство скорости света — фундаме­нтальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных представ­лений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное эксперимен­тальное подтверждение, являясь тем самым обоснованием постулатов Эйнштей­на — обоснованием специальной теории относительности.

§ 36. Преобразования Лоренца

Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразова­ниями, удовлетворяющими постулатам теории относительности.

Для иллюстрации этого вывода рассмотрим две инерциальные системы отсчета: К (с координатами х, у, z) и К' (с координатами х', у', z'), движущуюся относительно К (вдоль оси х) со скоростью v = const (рис. 59). Пусть в начальный момент времени t=t'= 0, когда начала координат О и О' совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна, скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки А (рис. 59), пройдя расстояние

х = ct, (36.1)

то в системе К' координата светового импульса в момент достижения точки А

х' = ct'. (36.2)

где t' — время прохождения светового импульса от начала координат до точки А в си­стеме К'. Вычитая (36.1) из (36.2), получаем

х' – х = c(t' – t).

Так как х' ¹ х (система К' перемещается по отношению к системе К), то

t ' ¹ t,

т. е. отсчет времени в системах К и К' различен — отсчет времени имеет относитель­ный характер (в классической физике считается, что время во всех инерциальных системах отсчета течет одинаково, т. е. t=t ').

Эйнштейн показал, что в теории относительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой:

заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна (формулы представлены для случая, когда К' движется относительно К со скоростью v вдоль оси х).

Эти преобразования предложены Лоренцем в 1904 г., еще до появления теории относительности,как преобразования, относительно которых уравнения Максвелла (см. § 139) инвариантны.

Преобразования Лоренца имеют вид

(36.3)

Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком при v. Это очевидно, таккак если скорость движения системы К' относительно системы К равна v, то скорость движения К относительно К' рав­на – v.

Из преобразований Лоренца вытекает также, что при малых скоростях (по сравне­нию со скоростью с), т. е. когда b <<1, они переходят в классические преобразования Галилея (в этом заключается суть принципа соответствия), которые являются, следова­тельно, предельным случаем преобразований Лоренца. При v>c выражения (36.3) для х, t, х', t' теряют физический смысл (становятся мнимыми). Это находится, в свою очередь, в соответствии с тем, что движение со скоростью, большей скорости распрост­ранения света в вакууме, невозможно.

Из преобразований Лоренца следует очень важный вывод о том, что как расстоя­ние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразова­ний Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преоб­разования (см. (36.3)) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким об­разом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространст­венные и временные координаты, образующие четырехмерное пространство-время.

§ 37. Следствия из преобразований Лоренца

1. Одновременность событий в разных системах отсчета. Пусть в системе К в точках с координатами x 1 и x 2 в моменты времени t 1 и t 2 происходят два события. В системе К' им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке (x 1 2являются одновременными (t 1 =t 2), то, согласно преобразованиям Лоренца (36.3),





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 375 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2191 - | 2111 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.