.
Таблица 6.2 – Исходные данные для построения модели –I Клейна
Годы | CN | Pt | Pt-1 | W1 | W2 | I | Kt-1 | Et | Et-1 |
41,9 | 12,4 | 12,7 | 25,5 | 2,7 | -0,2 | 182,8 | 45,6 | 44,9 | |
45,0 | 16,9 | 12,4 | 29,3 | 2,9 | 1,9 | 182,6 | 50,1 | 45,6 | |
49,2 | 18,4 | 16,9 | 34,1 | 2,9 | 5,2 | 184,5 | 57,2 | 50,1 | |
50,6 | 19,4 | 18,4 | 33,9 | 3,1 | 3,0 | 189,7 | 57,1 | 57,2 | |
52,6 | 20,1 | 19,4 | 35,4 | 3,2 | 5,1 | 192,7 | 61,0 | 57,1 | |
55,1 | 19,6 | 20,1 | 37,4 | 3,3 | 5,6 | 197,8 | 64,0 | 61,0 |
Продолжение таблицы 6.2
56,2 | 19,8 | 19,6 | 37,9 | 3,6 | 4,2 | 203,4 | 64,4 | 64,0 | |
57,3 | 21,1 | 19,8 | 39,2 | 3,7 | 3,0 | 207,6 | 64,5 | 64,4 | |
57,8 | 21,7 | 21,1 | 41,3 | 4,0 | 5,1 | 210,6 | 67,0 | 64,5 | |
55,0 | 15,6 | 21,7 | 37,9 | 4,2 | 1,0 | 215,7 | 61,2 | 67,0 | |
50,9 | 11,4 | 15,6 | 34,5 | 4,8 | -3,4 | 216,7 | 53,4 | 61,2 | |
45,6 | 7,0 | 11,4 | 29,0 | 5,3 | -6,2 | 213,3 | 44,3 | 53,4 | |
46,5 | 11,2 | 7,0 | 28,5 | 5,6 | -5,1 | 207,1 | 45,1 | 44,3 | |
48,7 | 12,3 | 11,2 | 30,6 | 6,0 | -3,0 | 202,0 | 49,7 | 45,1 | |
51,3 | 14,0 | 12,3 | 33,2 | 6,1 | -1,3 | 199,0 | 54,4 | 49,7 | |
57,7 | 17,6 | 14,0 | 36,8 | 7,4 | 2,1 | 197,7 | 62,7 | 54,4 | |
58,7 | 17,3 | 17,6 | 41,0 | 6,7 | 2,0 | 199,8 | 65,0 | 62,7 | |
57,5 | 15,3 | 17,3 | 38,2 | 7,7 | -1,9 | 201,8 | 60,9 | 65,0 | |
61,6 | 19,0 | 15,3 | 41,6 | 7,8 | 1,3 | 199,9 | 69,5 | 60,9 | |
65,0 | 21,1 | 19,0 | 45,0 | 8,0 | 3,3 | 201,2 | 75,7 | 69,5 | |
69,7 | 23,5 | 21,1 | 53,3 | 8,5 | 4,9 | 204,5 | 88,4 | 75,7 |
где - потребление;
- текущий и лаговый незарплатный доход (прибыль), долл. США;
- заработная плата работников занятых в частном секторе, долл. США;
- заработная плата работников занятых в государственном секторе, долл. США;
- запас капитала на начало года, долл. США;
- чистые инвестиции, долл. США;
- текущий и лаговый частный продукт (равен как НД плюс косвенные налоги на бизнес минус ).
Проверим модель на идентифицируемость.
В модели 3 эндогенные переменные: , , . Следовательно, К=3.
И 6 предопределенных переменных: , , , . Следовательно, М=6.
Проверим необходимое условие идентификации:
В первом уравнении m1=3, k=1. 6-3=3>1-1=0. Следовательно, уравнение сверхидентифицированно.
Во втором уравнении m2=3, k=1. 6-3=3>1-1=0. Следовательно, уравнение сверхидентифицированно.
В третьем уравнении m3=2, k=1. 6-2=4>1-1=0. Следовательно, уравнение сверхидентифицированно.
Проверим достаточное условие идентификации:
В первом уравнении отсутствуют , , . Построим матрицу из коэффициентов при них в других уравнениях системы: .
Ранг данной матрицы равен 2=К-1=3-1. Следовательно, уравнение точно идентифицируемо.
Во втором уравнении отсутствуют , , , , . Построим матрицу из коэффициентов при них в других уравнениях системы: .
Ранг данной матрицы равен 2=К-1=3-1. Следовательно, уравнение точно идентифицируемо.
В третьем уравнении отсутствуют , , , , . Построим матрицу из коэффициентов при них в других уравнениях системы: .
Ранг данной матрицы равен 2=К-1=3-1. Следовательно, уравнение точно идентифицируемо.
Таким образом, можно сделать вывод, что исследуемая модель сверхидентифицированна и может быть решена двухшаговым методом наименьших квадратов (ДМНК).
1 Составим приведенную форму модели:
.
2 С помощью традиционного МНК оценим параметры приведенной формы модели. Получим следующие результаты (рисунок 6.3).
Рисунок 6.3 – Вывод итогов регрессионного анализа системы приведенных уравнений
Оцененная приведенная форма модели примет вид:
.
3 Определим расчетные значения переменной , т.к. она фигурирует в качестве фактора в структурной форме модели (рисунок 6.4).
Рисунок 6.4 – Расчетные и фактические значения переменной
4Определяем параметры каждого уравнения в отдельности традиционным МНК, используя в качестве факторов входящие в это уравнение предопределенные переменные и расчетные значения эндогенной переменной . Результаты представлены на рисунках 6.5 - 6.7.
Таким образом, система структурных уравнений примет вид:
.
Все полученные уравнения статистически значимы по F – критерию.
Рассчитаем по ним теоретические значения эндогенных переменных и проведем графический анализ (рисунок 6.8). Как видно на рисунке, теоретические значения незначительно отклоняются от фактических, следовательно полученная модель адекватна изучаемым процессам.
Рисунок 6.5 – Результаты МНК - оценивания первого уравнения
структурной формы ()
Рисунок 6.6 – Результаты МНК - оценивания второго уравнения
структурной формы ()
Рисунок 6.7 – Результаты МНК - оценивания третьего уравнения
структурной формы ()
Рисунок 6.8 – Сравнительный графический анализ теоретических
и фактических значений эндогенных переменных