Для оценки тесноты связи по первым разностям используем формулу:
.
где , - первые разности
Построим вспомогательную таблицу 5.10.
Таблица 5.10 – Расчет коэффициента корреляции
t | y | x | |||||
325,69 | 15,69 | - | - | - | - | - | |
340,79 | 16,69 | 15,10 | 1,00 | 15,10 | 1,52 | 0,04 | |
349,39 | 17,69 | 8,60 | 1,00 | 8,60 | 59,81 | 0,04 | |
373,59 | 19,09 | 24,20 | 1,40 | 33,88 | 61,88 | 0,04 | |
389,79 | 20,79 | 16,20 | 1,70 | 27,54 | 0,02 | 0,24 | |
399,09 | 21,69 | 9,30 | 0,90 | 8,37 | 49,47 | 0,10 | |
421,49 | 23,09 | 22,40 | 1,40 | 31,36 | 36,80 | 0,04 | |
441,39 | 24,09 | 19,90 | 1,00 | 19,90 | 12,72 | 0,04 | |
458,29 | 25,19 | 16,90 | 1,10 | 18,59 | 0,32 | 0,01 | |
472,33 | 26,58 | 14,04 | 1,39 | 19,49 | 5,28 | 0,03 | |
489,02 | 27,81 | 16,70 | 1,23 | 20,48 | 0,13 | 0,00 | |
Итого | 4460,86 | 238,39 | 163,33 | 12,12 | 203,32 | 227,95 | 0,59 |
В среднем | 405,53 | 21,67 | 16,33 | 1,21 | 20,33 | 22,80 | 0,06 |
Подставляя в формулу наши данные, получим:
.
Следовательно, можно сделать вывод о наличии прямой связи средней силы скорости ряда энерговооруженности 1 рабочего и скорости ряда выпуска продукции.
Для оценки параметров уравнения регрессии по первым разностям воспользуемся встроенной функцией MS Excel. Результаты оценивания представлены в приложении В.
Уравнение регрессии примет вид:
.
Оно показывает, что рост скорости энерговооруженности 1 рабочего на 1 кВт/ч, способствует росту скорости для ряда выпуска продукции на 13,6 тыс. тонн.
Прогнозирование осуществим по формуле:
.
Прогноз выпуска продукции на 2006 год, при ожидаемом увеличении энерговооруженности на 1 кВт/ч относительно 11 года, составит:
тыс. тонн.
Корреляция и регрессия по отклонениям от тренда
Коэффициент корреляции по отклонениям от тренда имеет вид:
,
где , - отклонения фактических значений ряда от тренда, т.е. , .
В качестве аппроксимирующей модели примем линейный тренд. Оценим параметры трендов с помощью встроенной функции MS Excel. Результаты представлены на рисунках 5.4 и 5.5.
Рисунок 5.4 – Динамика выпуска продукции
Рисунок 5.5 – Динамика энерговооруженности рабочих
Таблица 5.11 – Расчет коэффициента корреляции по остаточным величинам
t | y | x | |||||||
325,69 | 15,69 | 322,04 | 15,54 | 3,65 | 0,15 | 0,55 | 13,33 | 0,02 | |
340,79 | 16,69 | 338,74 | 16,77 | 2,05 | -0,08 | -0,16 | 4,22 | 0,01 | |
349,39 | 17,69 | 355,43 | 17,99 | -6,04 | -0,30 | 1,83 | 36,53 | 0,09 | |
373,59 | 19,09 | 372,13 | 19,22 | 1,46 | -0,13 | -0,19 | 2,12 | 0,02 | |
389,79 | 20,79 | 388,83 | 20,45 | 0,96 | 0,34 | 0,33 | 0,92 | 0,12 | |
399,09 | 21,69 | 405,53 | 21,67 | -6,44 | 0,02 | -0,11 | 41,45 | 0,00 | |
421,49 | 23,09 | 422,23 | 22,90 | -0,74 | 0,19 | -0,14 | 0,54 | 0,04 | |
441,39 | 24,09 | 438,92 | 24,13 | 2,47 | -0,04 | -0,09 | 6,08 | 0,00 | |
458,29 | 25,19 | 455,62 | 25,35 | 2,67 | -0,16 | -0,43 | 7,12 | 0,03 | |
472,33 | 26,58 | 472,32 | 26,58 | 0,01 | 0,00 | 0,00 | 0,00 | 0,00 | |
489,02 | 27,81 | 489,02 | 27,81 | 0,01 | 0,00 | 0,00 | 0,00 | 0,00 | |
- | - | 505,72 | 29,03 | - | - | - | - | - | |
Итого | 4460,86 | 238,39 | 4460,81 | 238,39 | 0,05 | -0,01 | 1,59 | 112,32 | 0,32 |
В среднем | 405,53 | 21,67 | 405,53 | 21,67 | 0,00 | 0,00 | 0,14 | 10,21 | 0,03 |
Тогда коэффициент корреляции рядов x и y по отклонениям от тренда составит:
.
Следовательно, связь между случайными отклонениями по ряду и ряду прямая слабая.
Регрессия по отклонениям от трендаимеет вид . Оценим параметры модели с помощью встроенной функции MS Excel. Результаты оценивания представлены в приложении Г.
Уравнение регрессии примет вид:
.
Коэффициент регрессии означает, что случайные отклонения по ряду в среднем в 18,55 раз выше случайных колебаний по ряду .
Прогнозная модель по отклонениям от тренда имеет вид:
,
где - прогнозное значение результативного признака;
- прогноз по тренду результативного признака;
- прогнозное значение факторного признака;
- прогноз по тренду факторного признака.
Тогда, подставив соответствующие значения в модель, получим прогноз выпуска продукции на 12 год, при ожидаемой энерговооруженности =28,81 кВт/ч:
тыс. тонн.